IDEAS home Printed from https://ideas.repec.org/p/cdl/uctcwp/qt06v2g6dh.html
   My bibliography  Save this paper

Understanding Sustainable Transportation Choices: Shifting Routine Automobile Travel to Walking and Bicycling

Author

Listed:
  • Schneider, Robert James

Abstract

In the two decades since the United States Congress passed the federal Intermodal Surface Transportation Efficiency Act, there has been a surge of interest in making urban transportation systems more sustainable. Many agencies, representing all levels of government, have searched for strategies to reduce private automobile use, including policies to shift local driving to pedestrian and bicycle modes. Progress has been made in a number of communities, but the automobile remains the dominant mode of transportation in all metropolitan regions. Sustainable transportation advocates are especially interested in routine travel, such as shopping and other errands, because it tends to be done frequently and for distances that could be covered realistically by walking or bicycling. According to the 2009 National Household Travel Survey, Americans made more trips for shopping than for any other purpose, including commuting to and from work. One-third of these shopping trips were shorter than two miles (3.2 km). However, 76% of these short shopping trips were made by automobile, while only 21% were made by walking and 1% by bicycling. In order to identify effective strategies to change travel behavior, practitioners need a greater understanding of why people choose certain modes for routine travel. Choosing to walk or bicycle rather than travel by automobile may help individuals get exercise, save money, interact with neighbors, and reduce tailpipe emissions. Yet, in some communities, non-motorized modes may also require more time and physical effort to run a series of errands, be less convenient for carrying packages and traveling in bad weather, and be perceived as having a higher risk of traffic crashes or street crime than driving. A mixed-methods approach was used to develop a more complete understanding of factors that are associated with walking or bicycling rather than driving for routine travel. An intercept survey was implemented to gather travel data from 1,003 customers at retail pharmacy stores in 20 San Francisco Bay Area neighborhoods in fall 2009. Follow-up interviews were conducted with 26 survey participants in spring and summer 2010 to gain a deeper understanding of factors that influenced their transportation decisions. The methodological approach makes several contributions to the body of research on sustainable transportation. For example, the study: Explored multiple categories of factors that may be associated with walking and bicycling, including travel, socioeconomic, attitude, perception, and shopping district characteristics. Few studies of pedestrian or bicycle mode choices have included all of these categories of factors. Statistical models showed that variables in all categories had significant associations with mode choice. Documented and analyzed short pedestrian movements, such as from a parking space to a store entrance or from a bus stop to home. These detailed data provided a greater understanding of pedestrian activity than traditional travel survey analyses. Walking was used as the primary mode for 65% of respondent trips between stops within shopping districts, and 52% of all respondents walked along a street or between stops at some time between leaving and returning home. Maps of respondent pedestrian path density revealed distinct pedestrian activity patterns in different types of shopping districts. Used four different approaches to capture participant travel mode information. Respondents reported the primary mode of transportation they were using on the day of the survey, the mode they typically used, and all modes that they would consider using to travel to the survey store. They also mapped all stops on their tour and said what modes they used between each stop. These four approaches revealed nuanced travel habits and made it possible to correct inaccuracies in self-reported primary travel mode data. Measured and tested fine-grained local environment variables in shopping districts rather than around respondents' homes. These variables characterized the shopping district area (e.g., sidewalks, bicycle facilities, metered parking, and tree canopy coverage), the main commercial roadway (e.g., posted speed limit, number of automobile lanes, and pedestrian crossing distance), and the survey store site (e.g., number of automobile and bicycle parking spaces and distance from the public sidewalk to the store entrance). This dissertation adds to the small number of studies that have explored how the characteristics of activity destinations are related to travel behavior. The study results contribute to the body of knowledge about factors that may encourage people to shift routine travel from automobile to pedestrian or bicycle modes. After controlling for travel factors such as time and cost, socioeconomic characteristics, and individual attitudes, mixed logit models showed that automobile use was negatively associated with higher employment density, smaller parking lots, and metered on-street parking in the shopping district. Walking was positively associated with higher population density, more street tree canopy coverage, lower speed limits, and fewer commercial driveway crossings. The exploratory analysis of a small number of bicycle tours found that bicycling was associated with more extensive bicycle facility networks and more bicycle parking. However, people were more likely to drive when they perceived a high risk of crime. Results also suggest the magnitude of mode shifts that could occur if short- and long-term land use and transportation system changes were made to each study shopping district. The mode choice model representing travel only to and from the study shopping districts (N = 388) was used to estimate respondent mode shares under the following three scenarios: 1) double population and employment densities in each study shopping district, 2) double street tree canopy coverage in each study shopping district, and 3) eliminate half of the automobile parking 3 spaces at the survey store. Based on the model, the combination of these three changes could increase pedestrian mode share among the 388 sample respondents from 43% to 61% and decrease automobile mode share from 50% to 31%. This shift could eliminate 129 (13%) of the 983 respondent vehicle miles traveled (208 of the 1,580 respondent vehicle kilometers traveled), and 110 (36%) of the 308 times respondents parked their automobiles in the shopping district. The mode choice model of walking versus driving within survey shopping districts (N = 286) was used to test the combination of the following scenarios: 1) cluster separated stores around shared parking lots, 2) consolidate commercial driveways so that there are half as many driveway crossings along the main commercial roadway, 3) reduce all main commercial roadway speed limits to 25 miles per hour (40 kilometers per hour), and 4) install metered parking in all shopping districts. These changes could increase the percentage of the 286 sample respondents walking between shopping district activities from 32% to 54%. This shift could eliminate 29 (38%) of the 76 respondent vehicle miles traveled (47 of the 122 respondent vehicle kilometers traveled), and 105 (22%) of the 469 times respondents parked their automobiles in the shopping district. Note that these forecasted mode shifts are illustrative examples based on cross-sectional data and do not account for the process of modifying travel behavior habits. Qualitative interviews provided a foundation for a proposed Theory of Routine Mode Choice Decisions. This five-step theory also drew from survey results and other mode choice theories in the transportation and psychology fields. The first step, 1) awareness and availability, determines which modes are viewed as possible choices for routine travel. The next three steps, 2) basic safety and security, 3) convenience and cost, and 4) enjoyment, assess situational tradeoffs between modes in the choice set and are supported by many of the statisticallysignificant factors in the mode choice models. The final step, 5) habit, reinforces previous choices and closes the decision process loop. Socioeconomic characteristics explain differences in how individuals view each step in the process. Understanding each step in the mode choice decision process can help planners, designers, engineers, and other policy-makers implement a comprehensive set of strategies that may be able to shift routine automobile travel to pedestrian and bicycle modes.

Suggested Citation

  • Schneider, Robert James, 2011. "Understanding Sustainable Transportation Choices: Shifting Routine Automobile Travel to Walking and Bicycling," University of California Transportation Center, Working Papers qt06v2g6dh, University of California Transportation Center.
  • Handle: RePEc:cdl:uctcwp:qt06v2g6dh
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/06v2g6dh.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Reid Ewing & Robert Cervero, 2010. "Travel and the Built Environment," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 265-294.
    2. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555.
    3. Mokhtarian, Patricia L. & Salomon, Ilan, 2001. "How derived is the demand for travel? Some conceptual and measurement considerations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(8), pages 695-719, September.
    4. Saelens, B.E. & Sallis, J.F. & Black, J.B. & Chen, D., 2003. "Neighborhood-Based Differences in Physical Activity: An Environment Scale Evaluation," American Journal of Public Health, American Public Health Association, vol. 93(9), pages 1552-1558.
    5. Bhat, Chandra R. & Gossen, Rachel, 2004. "A mixed multinomial logit model analysis of weekend recreational episode type choice," Transportation Research Part B: Methodological, Elsevier, vol. 38(9), pages 767-787, November.
    6. David Revelt & Kenneth Train, 1998. "Mixed Logit With Repeated Choices: Households' Choices Of Appliance Efficiency Level," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 647-657, November.
    7. Sungyop Kim & Gudmundur Ulfarsson, 2008. "Curbing automobile use for sustainable transportation: analysis of mode choice on short home-based trips," Transportation, Springer, vol. 35(6), pages 723-737, November.
    8. Schneider, Robert J. & Arnold, Lindsay S. & Ragland, David R., 2009. "A Pilot Model for Estimating Pedestrian Intersection Crossing Volumes," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3nr8h66j, Institute of Transportation Studies, UC Berkeley.
    9. David Hensher & April Reyes, 2000. "Trip chaining as a barrier to the propensity to use public transport," Transportation, Springer, vol. 27(4), pages 341-361, December.
    10. Philip A. Viton, 2004. "Will Mixed Logit Change Urban Transport Policies?," Journal of Transport Economics and Policy, University of Bath, vol. 38(3), pages 403-423, September.
    11. Ann Forsyth & J. Michael Oakes & Kathryn H. Schmitz & Mary Hearst, 2007. "Does Residential Density Increase Walking and Other Physical Activity?," Urban Studies, Urban Studies Journal Limited, vol. 44(4), pages 679-697, April.
    12. Thirayoot Limanond & Debbie Niemeier, 2004. "Effect of land use on decisions of shopping tour generation: A case study of three traditional neighborhoods in WA," Transportation, Springer, vol. 31(2), pages 153-181, May.
    13. Cynthia Chen & Hongmian Gong & Robert Paaswell, 2008. "Role of the built environment on mode choice decisions: additional evidence on the impact of density," Transportation, Springer, vol. 35(3), pages 285-299, May.
    14. Maren Outwater & Greg Spitz & John Lobb & Margaret Campbell & Bhargava Sana & Ram Pendyala & William Woodford, 2011. "Characteristics of premium transit services that affect mode choice," Transportation, Springer, vol. 38(4), pages 605-623, July.
    15. Ryley, Timothy John, 2008. "The propensity for motorists to walk for short trips: Evidence from West Edinburgh," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(4), pages 620-628, May.
    16. Xinyu Cao & Susan Handy & Patricia Mokhtarian, 2006. "The Influences of the Built Environment and Residential Self-Selection on Pedestrian Behavior: Evidence from Austin, TX," Transportation, Springer, vol. 33(1), pages 1-20, January.
    17. Van Acker, Veronique & Witlox, Frank, 2010. "Car ownership as a mediating variable in car travel behaviour research using a structural equation modelling approach to identify its dual relationship," Journal of Transport Geography, Elsevier, vol. 18(1), pages 65-74.
    18. Rose, Geoff & Marfurt, Heidi, 2007. "Travel behaviour change impacts of a major ride to work day event," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(4), pages 351-364, May.
    19. Roger Mackett, 2003. "Why do people use their cars for short trips?," Transportation, Springer, vol. 30(3), pages 329-349, August.
    20. Handy, Susan & Cao, Xinyu & Mokhtarian, Patricia L., 2005. "Correlation or causality between the built environment and travel behavior? Evidence from Northern California," University of California Transportation Center, Working Papers qt5b76c5kg, University of California Transportation Center.
    21. Colin Black & Alan Collins & Martin Snell, 2001. "Encouraging Walking: The Case of Journey-to-school Trips in Compact Urban Areas," Urban Studies, Urban Studies Journal Limited, vol. 38(7), pages 1121-1141, June.
    22. Satoshi Fujii & Ryuichi Kitamura, 2003. "What does a one-month free bus ticket do to habitual drivers? An experimental analysis of habit and attitude change," Transportation, Springer, vol. 30(1), pages 81-95, February.
    23. Liang Long & Jie Lin & Kimon Proussaloglou, 2010. "Investigating Contextual Variability in Mode Choice in Chicago Using a Hierarchical Mixed Logit Model," Urban Studies, Urban Studies Journal Limited, vol. 47(11), pages 2445-2459, October.
    24. David Hensher & William Greene, 2003. "The Mixed Logit model: The state of practice," Transportation, Springer, vol. 30(2), pages 133-176, May.
    25. McMillan, Tracy & Day, Kristen & Boarnet, Marlon & Alfonzo, Mariela & Anderson, Craig, 2006. "Johnny Walks to School - Does Jane? Sex Differences in Children's Active Travel to School," University of California Transportation Center, Working Papers qt22f7k6z8, University of California Transportation Center.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Samira Ramezani & Barbara Pizzo & Elizabeth Deakin, 2018. "An integrated assessment of factors affecting modal choice: towards a better understanding of the causal effects of built environment," Transportation, Springer, vol. 45(5), pages 1351-1387, September.
    2. Hyungkyoo Kim & Elizabeth Macdonald, 2016. "Does Wind Discourage Sustainable Transportation Mode Choice? Findings from San Francisco, California, USA," Sustainability, MDPI, vol. 8(3), pages 1-15, March.
    3. Schneider, Robert James, 2013. "Measuring transportation at a human scale: An intercept survey approach to capture pedestrian activity," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 6(3), pages 43-59.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schneider, Robert J., 2013. "Theory of routine mode choice decisions: An operational framework to increase sustainable transportation," Transport Policy, Elsevier, vol. 25(C), pages 128-137.
    2. Veronique Acker & Frank Witlox, 2011. "Commuting trips within tours: how is commuting related to land use?," Transportation, Springer, vol. 38(3), pages 465-486, May.
    3. Ding, Yu & Lu, Huapu, 2016. "Activity participation as a mediating variable to analyze the effect of land use on travel behavior: A structural equation modeling approach," Journal of Transport Geography, Elsevier, vol. 52(C), pages 23-28.
    4. Shen, Qing & Chen, Peng & Pan, Haixiao, 2016. "Factors affecting car ownership and mode choice in rail transit-supported suburbs of a large Chinese city," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 31-44.
    5. Samira Ramezani & Barbara Pizzo & Elizabeth Deakin, 2018. "An integrated assessment of factors affecting modal choice: towards a better understanding of the causal effects of built environment," Transportation, Springer, vol. 45(5), pages 1351-1387, September.
    6. Guimpert, Ignacio & Hurtubia, Ricardo, 2018. "Measuring, understanding and modelling the Walking Neighborhood as a function of built environment and socioeconomic variables," Journal of Transport Geography, Elsevier, vol. 71(C), pages 32-44.
    7. Fosgerau, Mogens & Bierlaire, Michel, 2007. "A practical test for the choice of mixing distribution in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 784-794, August.
    8. Li, Jingjing & Kim, Changjoo & Sang, Sunhee, 2018. "Exploring impacts of land use characteristics in residential neighborhood and activity space on non-work travel behaviors," Journal of Transport Geography, Elsevier, vol. 70(C), pages 141-147.
    9. Ding, Chuan & Wang, Donggen & Liu, Chao & Zhang, Yi & Yang, Jiawen, 2017. "Exploring the influence of built environment on travel mode choice considering the mediating effects of car ownership and travel distance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 65-80.
    10. Toşa, Cristian & Sato, Hitomi & Morikawa, Takayuki & Miwa, Tomio, 2018. "Commuting behavior in emerging urban areas: Findings of a revealed-preferences and stated-intentions survey in Cluj-Napoca, Romania," Journal of Transport Geography, Elsevier, vol. 68(C), pages 78-93.
    11. Deka, Devajyoti & Carnegie, Jon, 2021. "Predicting transit mode choice of New Jersey workers commuting to New York City from a stated preference survey," Journal of Transport Geography, Elsevier, vol. 91(C).
    12. Van Acker, Veronique & Witlox, Frank, 2010. "Car ownership as a mediating variable in car travel behaviour research using a structural equation modelling approach to identify its dual relationship," Journal of Transport Geography, Elsevier, vol. 18(1), pages 65-74.
    13. Bojing Liao & Yifan Xu & Xiang Li & Ji Li, 2022. "Association between Campus Walkability and Affective Walking Experience, and the Mediating Role of Walking Attitude," IJERPH, MDPI, vol. 19(21), pages 1-13, November.
    14. Wang, Tingting & Chen, Cynthia, 2012. "Attitudes, mode switching behavior, and the built environment: A longitudinal study in the Puget Sound Region," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(10), pages 1594-1607.
    15. Mitra, Suman & Yao, Mingqi & Ritchie, Stephen G., 2021. "Gender differences in elderly mobility in the United States," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 203-226.
    16. Andani, I Gusti Ayu & La Paix Puello, Lissy & Geurs, Karst, 2021. "Modelling effects of changes in travel time and costs of toll road usage on choices for residential location, route and travel mode across population segments in the Jakarta-Bandung region, Indonesia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 81-102.
    17. De Vos, Jonas & Ettema, Dick & Witlox, Frank, 2018. "Changing travel behaviour and attitudes following a residential relocation," Journal of Transport Geography, Elsevier, vol. 73(C), pages 131-147.
    18. Haghani, Milad & Bliemer, Michiel C.J. & Hensher, David A., 2021. "The landscape of econometric discrete choice modelling research," Journal of choice modelling, Elsevier, vol. 40(C).
    19. Tae-Hyoung Tommy Gim, 2023. "Residential self-selection or socio-ecological interaction? the effects of sociodemographic and attitudinal characteristics on the built environment–travel behavior relationship," Transportation, Springer, vol. 50(4), pages 1347-1398, August.
    20. Jonas De Vos & Long Cheng & Frank Witlox, 2021. "Do changes in the residential location lead to changes in travel attitudes? A structural equation modeling approach," Transportation, Springer, vol. 48(4), pages 2011-2034, August.

    More about this item

    Keywords

    Social and Behavioral Sciences;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:uctcwp:qt06v2g6dh. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.