IDEAS home Printed from https://ideas.repec.org/p/cdl/itsdav/qt88c6t0m3.html
   My bibliography  Save this paper

Anticipating PHEV Energy Impacts in California

Author

Listed:
  • Axsen, John
  • Kurani, Kenneth S.

Abstract

To explore the potential energy impacts of widespread PHEV use, an innovative, three-part survey instrument collected data from 877 new vehicle buyers in California. This analysis combines all the available information from each respondent—driving, recharge potential, and PHEV design priorities—to estimate the energy impacts of the respondents’ existing travel and understandings of PHEVs under a variety of recharging scenarios. Results suggest that the use of PHEV vehicles could halve gasoline use relative to conventional vehicles—the majority of this reduction being due to increases in charge sustaining (CS) fuel economy. Using three scenarios to represent potential boundary conditions on PHEV driver recharge patterns (unconstrained, universal workplace recharging, and off-peak only charging), we estimate tradeoffs between the magnitude and timing of PHEV electricity use. In the unconstrained “Plug and Play” recharge scenario, recharging peaks at 6:15 p.m., following a far more dispersed pattern throughout the earlier part of the day than anticipated by previous research. PHEV electricity use could be increased through policies increasing non-home recharge opportunities (e.g., the “Enhanced Workplace Access” scenario), but most of this increase occurs during daytime hours and could contribute to peak electricity demand (depending on a given region’s definition of “peak”). We also demonstrate how deferring all recharging to off-peak hours (8:00 p.m. to 6:00 a.m.) could eliminate all additions to daytime electricity demand from PHEVs. However, in such a scenario less electricity is used due to the elimination of daytime recharge opportunities and less gasoline is displaced. Overall, policy, technology, and energy providers may use this information to understand whether their plans, designs, and goals align with these present empirically informed understandings.

Suggested Citation

  • Axsen, John & Kurani, Kenneth S., 2009. "Anticipating PHEV Energy Impacts in California," Institute of Transportation Studies, Working Paper Series qt88c6t0m3, Institute of Transportation Studies, UC Davis.
  • Handle: RePEc:cdl:itsdav:qt88c6t0m3
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/88c6t0m3.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hadley, Stanton W. & Tsvetkova, Alexandra A., 2009. "Potential Impacts of Plug-in Hybrid Electric Vehicles on Regional Power Generation," The Electricity Journal, Elsevier, vol. 22(10), pages 56-68, December.
    2. Kurani, Kenneth S & Turrentine, Tom & Sperling, Daniel, 1994. "Demand for electric vehicles in hybrid households: an exploratory analysis," Transport Policy, Elsevier, vol. 1(4), pages 244-256, October.
    3. repec:cdl:itsdav:qt4491w7kf is not listed on IDEAS
    4. repec:cdl:uctcwp:qt1c29r4hr is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Christopher, 2011. "California’s Energy Future: Transportation Energy Use in California," Institute of Transportation Studies, Working Paper Series qt8j69x46d, Institute of Transportation Studies, UC Davis.
    2. Tulpule, Pinak J. & Marano, Vincenzo & Yurkovich, Stephen & Rizzoni, Giorgio, 2013. "Economic and environmental impacts of a PV powered workplace parking garage charging station," Applied Energy, Elsevier, vol. 108(C), pages 323-332.
    3. Yang, Christopher & Ogden, Joan M & Hwang, Roland & Sperling, Daniel, 2011. "California’s Energy Future: Transportation Energy Use in California," Institute of Transportation Studies, Working Paper Series qt70j8b21c, Institute of Transportation Studies, UC Davis.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:cdl:uctcwp:qt15f9495j is not listed on IDEAS
    2. Chéron, Emmanuel & Zins, Michel, 1997. "Electric vehicle purchasing intentions: The concern over battery charge duration," Transportation Research Part A: Policy and Practice, Elsevier, vol. 31(3), pages 235-243, May.
    3. repec:cdl:itsdav:qt9mw1t4w3 is not listed on IDEAS
    4. Liu, Wen & Hu, Weihao & Lund, Henrik & Chen, Zhe, 2013. "Electric vehicles and large-scale integration of wind power – The case of Inner Mongolia in China," Applied Energy, Elsevier, vol. 104(C), pages 445-456.
    5. Petschnig, Martin & Heidenreich, Sven & Spieth, Patrick, 2014. "Innovative alternatives take action – Investigating determinants of alternative fuel vehicle adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 68-83.
    6. Axsen, Jonn & Kurani, Kenneth S., 2013. "Hybrid, plug-in hybrid, or electric—What do car buyers want?," Energy Policy, Elsevier, vol. 61(C), pages 532-543.
    7. repec:cdl:itsdav:qt4kv151dp is not listed on IDEAS
    8. Wesche, Julius P. & Plötz, Patrick & Dütschke, Elisabeth, 2016. "How to trigger mass market adoption of electric vehicles? Factors predicting interest in electric vehicles in Germany," Working Papers "Sustainability and Innovation" S07/2016, Fraunhofer Institute for Systems and Innovation Research (ISI).
    9. Hafiz Abdul Muqeet & Rehan Liaqat & Mohsin Jamil & Asharf Ali Khan, 2023. "A State-of-the-Art Review of Smart Energy Systems and Their Management in a Smart Grid Environment," Energies, MDPI, vol. 16(1), pages 1-23, January.
    10. Xiaohua Zhang & Jun Xie & Zhengwei Zhu & Jianfeng Zheng & Hao Qiang & Hailong Rong, 2016. "Smart Grid Cost-Emission Unit Commitment via Co-Evolutionary Agents," Energies, MDPI, vol. 9(10), pages 1-13, October.
    11. repec:cdl:itsdav:qt16k010cq is not listed on IDEAS
    12. Talaei, A. & Begg, K. & Jamasb, T., 2012. "The Large Scale Roll-Out of Electric Vehicles: The Effect on the Electricity Sector and CO2 Emissions," Cambridge Working Papers in Economics 1246, Faculty of Economics, University of Cambridge.
    13. Anders F. Jensen & Elisabetta Cherchi & Stefan L. Mabit & Juan de Dios Ortúzar, 2017. "Predicting the Potential Market for Electric Vehicles," Transportation Science, INFORMS, vol. 51(2), pages 427-440, May.
    14. Irfan, Muhammad & Iqbal, Jamshed & Iqbal, Adeel & Iqbal, Zahid & Riaz, Raja Ali & Mehmood, Adeel, 2017. "Opportunities and challenges in control of smart grids – Pakistani perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 652-674.
    15. Xiao, Jingjie, 2013. "Grid integration and smart grid implementation of emerging technologies in electric power systems through approximate dynamic programming," MPRA Paper 58696, University Library of Munich, Germany.
    16. repec:cdl:itsdav:qt13q9r34w is not listed on IDEAS
    17. Das, H.S. & Rahman, M.M. & Li, S. & Tan, C.W., 2020. "Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    18. Turrentine, Thomas S. & Kurani, Kenneth S., 2007. "Car buyers and fuel economy?," Energy Policy, Elsevier, vol. 35(2), pages 1213-1223, February.
    19. Yang, Shengjie & Yao, Jiangang & Kang, Tong & Zhu, Xiangqian, 2014. "Dynamic operation model of the battery swapping station for EV (electric vehicle) in electricity market," Energy, Elsevier, vol. 65(C), pages 544-549.
    20. Kempton, Willett & Kubo, Toru, 2000. "Electric-drive vehicles for peak power in Japan," Energy Policy, Elsevier, vol. 28(1), pages 9-18, January.
    21. Axsen, Jonn & Kurani, Kenneth S. & McCarthy, Ryan & Yang, Christopher, 2011. "Plug-in hybrid vehicle GHG impacts in California: Integrating consumer-informed recharge profiles with an electricity-dispatch model," Energy Policy, Elsevier, vol. 39(3), pages 1617-1629, March.
    22. repec:cdl:uctcwp:qt0xf006kd is not listed on IDEAS
    23. Azhar Ul-Haq & Marium Azhar & Yousef Mahmoud & Aqib Perwaiz & Essam A. Al-Ammar, 2017. "Probabilistic Modeling of Electric Vehicle Charging Pattern Associated with Residential Load for Voltage Unbalance Assessment," Energies, MDPI, vol. 10(9), pages 1-18, September.
    24. S Satheesh Kumar & B Ashok Kumar & S Senthilrani, 2024. "Review of electric vehicle (EV) charging using renewable solar photovoltaic (PV) nano grid," Energy & Environment, , vol. 35(2), pages 1089-1117, March.
    25. Danielis, Romeo & Scorrano, Mariangela & Giansoldati, Marco & Rotaris, Lucia, 2019. "A meta-analysis of the importance of the driving range in consumers’ preference studies for battery electric vehicles," Working Papers 19_2, SIET Società Italiana di Economia dei Trasporti e della Logistica.
    26. Li, Yiqun & Pu, Ziyuan & Liu, Pei & Qian, Tao & Hu, Qinran & Zhang, Junyi & Wang, Yinhai, 2025. "Efficient predictive control strategy for mitigating the overlap of EV charging demand and residential load based on distributed renewable energy," Renewable Energy, Elsevier, vol. 240(C).

    More about this item

    Keywords

    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt88c6t0m3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.