IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v240y2025ics0960148124022225.html
   My bibliography  Save this article

Efficient predictive control strategy for mitigating the overlap of EV charging demand and residential load based on distributed renewable energy

Author

Listed:
  • Li, Yiqun
  • Pu, Ziyuan
  • Liu, Pei
  • Qian, Tao
  • Hu, Qinran
  • Zhang, Junyi
  • Wang, Yinhai

Abstract

The escalating charging demands driven by the rapid expansion of electric vehicles (EVs) can lead to overlap with residential load, impacting power system instability. Therefore, mitigating the overlap between the EV charging load and the residential load is necessary in the development of EVs. In this context, efficient energy management is proposed in this work to reduce the overlap between the EV charging load and the residential load. First, a self-sustained transportation energy system (STES) is introduced in this work by equipping with photovoltaic (PV) power, to ensure the energy demand of EVs. Moreover, an effective three-stage predictive control approach is elaborately developed in this STES, aiming to reduce the reliance on the power grid and optimize the consumption of PV power. The control algorithm of the three-stage predictive approach operates as follows: Stage I focuses on optimizing day-ahead electricity purchases based on supply and demand predictions, Stage II allocates charging power to stations, and Stage III executes real-time control leveraging energy storage system (ESS) capabilities. Meanwhile, an ensemble deep learning model is well-designed in this proposed method to capture the long-term dependence and the underlying periodic pattern of PV power and the charging demand, called ensemble temporal convolutional network-bidirectional long short-term memory network (ETCN-BiLSTM). The integration of ETCN is achieved by a weight fusion mechanism that calculates the contribution of different TCN layers. Then, this work employs ESS as a ”mitigator” to balance the energy supply and demand. Experimental validation and comparative analysis highlight the efficacy of both prediction and control components in optimizing energy management. Through comprehensive testing, the proposed approach demonstrates its capability to efficiently manage energy in charging stations while maintaining economic feasibility.

Suggested Citation

  • Li, Yiqun & Pu, Ziyuan & Liu, Pei & Qian, Tao & Hu, Qinran & Zhang, Junyi & Wang, Yinhai, 2025. "Efficient predictive control strategy for mitigating the overlap of EV charging demand and residential load based on distributed renewable energy," Renewable Energy, Elsevier, vol. 240(C).
  • Handle: RePEc:eee:renene:v:240:y:2025:i:c:s0960148124022225
    DOI: 10.1016/j.renene.2024.122154
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124022225
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.122154?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rodrigues, Daniel L. & Ye, Xianming & Xia, Xiaohua & Zhu, Bing, 2020. "Battery energy storage sizing optimisation for different ownership structures in a peer-to-peer energy sharing community," Applied Energy, Elsevier, vol. 262(C).
    2. Rehman, Waqas ur & Bo, Rui & Mehdipourpicha, Hossein & Kimball, Jonathan W., 2022. "Sizing battery energy storage and PV system in an extreme fast charging station considering uncertainties and battery degradation," Applied Energy, Elsevier, vol. 313(C).
    3. Rehman, Anis Ur & Ullah, Zia & Shafiq, Aqib & Hasanien, Hany M. & Luo, Peng & Badshah, Fazal, 2023. "Load management, energy economics, and environmental protection nexus considering PV-based EV charging stations," Energy, Elsevier, vol. 281(C).
    4. Leehter Yao & Zolboo Damiran & Wei Hong Lim, 2017. "Optimal Charging and Discharging Scheduling for Electric Vehicles in a Parking Station with Photovoltaic System and Energy Storage System," Energies, MDPI, vol. 10(4), pages 1-20, April.
    5. Li, Shuangqi & He, Hongwen & Zhao, Pengfei, 2021. "Energy management for hybrid energy storage system in electric vehicle: A cyber-physical system perspective," Energy, Elsevier, vol. 230(C).
    6. Zhou, Yuekuan & Liu, Xiaohua & Zhao, Qianchuan, 2024. "A stochastic vehicle schedule model for demand response and grid flexibility in a renewable-building-e-transportation-microgrid," Renewable Energy, Elsevier, vol. 221(C).
    7. Qiu, Yueming Lucy & Wang, Yi David & Iseki, Hiroyuki & Shen, Xingchi & Xing, Bo & Zhang, Huiming, 2022. "Empirical grid impact of in-home electric vehicle charging differs from predictions," Resource and Energy Economics, Elsevier, vol. 67(C).
    8. Hadley, Stanton W. & Tsvetkova, Alexandra A., 2009. "Potential Impacts of Plug-in Hybrid Electric Vehicles on Regional Power Generation," The Electricity Journal, Elsevier, vol. 22(10), pages 56-68, December.
    9. Sun, Chuyu & Zhao, Xiaoli & Qi, Binbin & Xiao, Weihao & Zhang, Hongjun, 2022. "Economic and environmental analysis of coupled PV-energy storage-charging station considering location and scale," Applied Energy, Elsevier, vol. 328(C).
    10. Feng, Jiawei & Hou, Shengya & Yu, Lijun & Dimov, Nikolay & Zheng, Pei & Wang, Chunping, 2020. "Optimization of photovoltaic battery swapping station based on weather/traffic forecasts and speed variable charging," Applied Energy, Elsevier, vol. 264(C).
    11. Zhou, Yuekuan, 2024. "AI-driven battery ageing prediction with distributed renewable community and E-mobility energy sharing," Renewable Energy, Elsevier, vol. 225(C).
    12. Fang, Xiaolun & Wang, Yubin & Dong, Wei & Yang, Qiang & Sun, Siyang, 2023. "Optimal energy management of multiple electricity-hydrogen integrated charging stations," Energy, Elsevier, vol. 262(PB).
    13. Xiaohan Liu & Patrick Plötz & Sonia Yeh & Zhengke Liu & Xiaoyue Cathy Liu & Xiaolei Ma, 2024. "Transforming public transport depots into profitable energy hubs," Nature Energy, Nature, vol. 9(10), pages 1206-1219, October.
    14. Ferri, Carlotta & Ziar, Hesan & Nguyen, Thien Tin & van Lint, Hans & Zeman, Miro & Isabella, Olindo, 2022. "Mapping the photovoltaic potential of the roads including the effect of traffic," Renewable Energy, Elsevier, vol. 182(C), pages 427-442.
    15. Lee, Donghun & Kim, Kwanho, 2021. "PV power prediction in a peak zone using recurrent neural networks in the absence of future meteorological information," Renewable Energy, Elsevier, vol. 173(C), pages 1098-1110.
    16. Ping, Dazhou & Li, Chaosu & Yu, Xiaojun & Liu, Zhengxuan & Tu, Ran & Zhou, Yuekuan, 2025. "City-scale information modelling for urban energy resilience with optimal battery energy storages in Hong Kong," Applied Energy, Elsevier, vol. 378(PA).
    17. Wang, Yubin & Dong, Wei & Yang, Qiang, 2022. "Multi-stage optimal energy management of multi-energy microgrid in deregulated electricity markets," Applied Energy, Elsevier, vol. 310(C).
    18. Tostado-Véliz, Marcos & Rezaee Jordehi, Ahmad & Zhou, Yuekuan & Mansouri, Seyed Amir & Jurado, Francisco, 2024. "Best-case-aware planning of photovoltaic-battery systems for multi-mode charging stations," Renewable Energy, Elsevier, vol. 225(C).
    19. Zhu, Xu & Yang, Jun & Pan, Xueli & Li, Gaojunjie & Rao, Yingqing, 2020. "Regional integrated energy system energy management in an industrial park considering energy stepped utilization," Energy, Elsevier, vol. 201(C).
    20. Yujiang Ye & Ruifeng Shi & Yuqin Gao & Xiaolei Ma & Di Wang, 2023. "Two-Stage Optimal Scheduling of Highway Self-Consistent Energy System in Western China," Energies, MDPI, vol. 16(5), pages 1-18, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Dafeng & Yang, Bo & Ma, Chengbin & Wang, Zhaojian & Zhu, Shanying & Ma, Kai & Guan, Xinping, 2022. "Stochastic gradient-based fast distributed multi-energy management for an industrial park with temporally-coupled constraints," Applied Energy, Elsevier, vol. 317(C).
    2. Zhou, Yuekuan, 2024. "AI-driven battery ageing prediction with distributed renewable community and E-mobility energy sharing," Renewable Energy, Elsevier, vol. 225(C).
    3. Zhao, Wanbing & Chang, Weiguang & Yang, Qiang, 2024. "Collaborative energy management of interconnected regional integrated energy systems considering spatio-temporal characteristics," Renewable Energy, Elsevier, vol. 235(C).
    4. Liao, Wei & Xiao, Fu & Li, Yanxue & Zhang, Hanbei & Peng, Jinqing, 2024. "A comparative study of demand-side energy management strategies for building integrated photovoltaics-battery and electric vehicles (EVs) in diversified building communities," Applied Energy, Elsevier, vol. 361(C).
    5. Dan, Zhaohui & Song, Aoye & Yu, Xiaojun & Zhou, Yuekuan, 2024. "Electrification-driven circular economy with machine learning-based multi-scale and cross-scale modelling approach," Energy, Elsevier, vol. 299(C).
    6. Zhou, Yuekuan, 2024. "Lifecycle battery carbon footprint analysis for battery sustainability with energy digitalization and artificial intelligence," Applied Energy, Elsevier, vol. 371(C).
    7. Zhao, Yuehao & Li, Zhiyi & Ju, Ping & Zhou, Yue, 2023. "Two-stage data-driven dispatch for integrated power and natural gas systems by using stochastic model predictive control," Applied Energy, Elsevier, vol. 343(C).
    8. Wang, Yubin & Zheng, Yanchong & Yang, Qiang, 2023. "Nash bargaining based collaborative energy management for regional integrated energy systems in uncertain electricity markets," Energy, Elsevier, vol. 269(C).
    9. Yin, Boyi & Zhu, Wenjiang & Tang, Cheng & Wang, Can & Xu, Xinhai, 2025. "Hierarchical optimal scheduling of IES considering SOFC degradation, internal and external uncertainties," Applied Energy, Elsevier, vol. 381(C).
    10. Wang, Dongxue & Fan, Ruguo & Yang, Peiwen & Du, Kang & Xu, Xiaoxia & Chen, Rongkai, 2024. "Research on floating real-time pricing strategy for microgrid operator in local energy market considering shared energy storage leasing," Applied Energy, Elsevier, vol. 368(C).
    11. Ziad Ragab & Ehsan Pashajavid & Sumedha Rajakaruna, 2024. "Optimal Sizing and Economic Analysis of Community Battery Systems Considering Sensitivity and Uncertainty Factors," Energies, MDPI, vol. 17(18), pages 1-20, September.
    12. Zhou, Yuekuan & Lund, Peter D., 2023. "Peer-to-peer energy sharing and trading of renewable energy in smart communities ─ trading pricing models, decision-making and agent-based collaboration," Renewable Energy, Elsevier, vol. 207(C), pages 177-193.
    13. Agga, Ali & Abbou, Ahmed & Labbadi, Moussa & El Houm, Yassine, 2021. "Short-term self consumption PV plant power production forecasts based on hybrid CNN-LSTM, ConvLSTM models," Renewable Energy, Elsevier, vol. 177(C), pages 101-112.
    14. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    15. Nitsch, Felix & Deissenroth-Uhrig, Marc & Schimeczek, Christoph & Bertsch, Valentin, 2021. "Economic evaluation of battery storage systems bidding on day-ahead and automatic frequency restoration reserves markets," Applied Energy, Elsevier, vol. 298(C).
    16. Liu, Wen & Hu, Weihao & Lund, Henrik & Chen, Zhe, 2013. "Electric vehicles and large-scale integration of wind power – The case of Inner Mongolia in China," Applied Energy, Elsevier, vol. 104(C), pages 445-456.
    17. Moradi, Amir & Salehi, Javad & Shafie-khah, Miadreza, 2024. "An interactive framework for strategic participation of a price-maker energy hub in the local gas and power markets based on the MPEC method," Energy, Elsevier, vol. 307(C).
    18. Lazzari, Florencia & Mor, Gerard & Cipriano, Jordi & Solsona, Francesc & Chemisana, Daniel & Guericke, Daniela, 2023. "Optimizing planning and operation of renewable energy communities with genetic algorithms," Applied Energy, Elsevier, vol. 338(C).
    19. Zhu, Jianquan & Xia, Yunrui & Mo, Xiemin & Guo, Ye & Chen, Jiajun, 2021. "A bilevel bidding and clearing model incorporated with a pricing strategy for the trading of energy storage use rights," Energy, Elsevier, vol. 235(C).
    20. Muhammad Kashif Rafique & Zunaib Maqsood Haider & Khawaja Khalid Mehmood & Muhammad Saeed Uz Zaman & Muhammad Irfan & Saad Ullah Khan & Chul-Hwan Kim, 2018. "Optimal Scheduling of Hybrid Energy Resources for a Smart Home," Energies, MDPI, vol. 11(11), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:240:y:2025:i:c:s0960148124022225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.