IDEAS home Printed from https://ideas.repec.org/p/cdl/itsdav/qt6g79m3xx.html
   My bibliography  Save this paper

A More Sustainable Minivan? An Exploratory Study of Electric Bicycle Use by San Francisco Bay Area Families

Author

Listed:
  • Thomas, Alainna

Abstract

This study focuses on family users of electric bikes, including electrified cargo bikes to learn how e-bikes are substituted for a family car. No previous studies on e-bikes look at family travel or use. Through semi-structured interviews of 20 San Francisco Bay Area e-bicyclists, this study sought to understand who family e-bike users are, their motivations for purchasing an e-bike, and the challenges they encounter. While larger studies are still needed, findings suggest that e-bikes, including electrified cargo bikes, are a viable alternative for cyclists with children. This study also supports previous research findings on travel behavior that the arrival of children does not always result in the end of biking. Major challenges participants identified were price, parking, and perceptions. Recommendations to address these issues include providing subsidies to offset costs, increasing parking infrastructure to accommodate diverse bicycle types, and disseminating more information on electric bikes to overcome misconceptions and to provide parents with an alternative to cars. View the NCST Project Webpage

Suggested Citation

  • Thomas, Alainna, 2016. "A More Sustainable Minivan? An Exploratory Study of Electric Bicycle Use by San Francisco Bay Area Families," Institute of Transportation Studies, Working Paper Series qt6g79m3xx, Institute of Transportation Studies, UC Davis.
  • Handle: RePEc:cdl:itsdav:qt6g79m3xx
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/6g79m3xx.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Seebauer, Sebastian, 2015. "Why early adopters engage in interpersonal diffusion of technological innovations: An empirical study on electric bicycles and electric scooters," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 146-160.
    2. Cherry, Christopher R. & Weinert, Jonathan X. & Yang, Xinmiao, 2009. "Comparative Environmental Impacts of Electric Bikes in China," Institute of Transportation Studies, Working Paper Series qt16k918sh, Institute of Transportation Studies, UC Davis.
    3. Cherry, Christopher & Cervero, Robert, 2007. "Use characteristics and mode choice behavior of electric bike users in China," Transport Policy, Elsevier, vol. 14(3), pages 247-257, May.
    4. Chatterjee, Kiron & Sherwin, Henrietta & Jain, Juliet, 2013. "Triggers for changes in cycling: the role of life events and modifications to the external environment," Journal of Transport Geography, Elsevier, vol. 30(C), pages 183-193.
    5. Eva Heinen & Bert van Wee & Kees Maat, 2009. "Commuting by Bicycle: An Overview of the Literature," Transport Reviews, Taylor & Francis Journals, vol. 30(1), pages 59-96, June.
    6. Jonathan Weinert & Chaktan Ma & Christopher Cherry, 2007. "The transition to electric bikes in China: history and key reasons for rapid growth," Transportation, Springer, vol. 34(3), pages 301-318, May.
    7. Wolf, Angelika & Seebauer, Sebastian, 2014. "Technology adoption of electric bicycles: A survey among early adopters," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 196-211.
    8. Geoffrey Rose, 2012. "E-bikes and urban transportation: emerging issues and unresolved questions," Transportation, Springer, vol. 39(1), pages 81-96, January.
    9. J. Pierce & Andrew Nash & Carole Clouter, 2013. "The in-use annual energy and carbon saving by switching from a car to an electric bicycle in an urban UK general medical practice: the implication for NHS commuters," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 15(6), pages 1645-1651, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laura McCarthy & Alexa Delbosc & Graham Currie & Andrew Molloy, 2020. "Parenthood and cars: A weakening relationship?," Transportation, Springer, vol. 47(3), pages 1127-1145, June.
    2. Ziwen Ling & Christopher R. Cherry & John H. MacArthur & Jonathan X. Weinert, 2017. "Differences of Cycling Experiences and Perceptions between E-Bike and Bicycle Users in the United States," Sustainability, MDPI, vol. 9(9), pages 1-18, September.
    3. Lin, Xiao & Wells, Peter & Sovacool, Benjamin K., 2017. "Benign mobility? Electric bicycles, sustainable transport consumption behaviour and socio-technical transitions in Nanjing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 223-234.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Steve O’Hern & Nora Estgfaeller, 2020. "A Scientometric Review of Powered Micromobility," Sustainability, MDPI, vol. 12(22), pages 1-21, November.
    2. Esther Salmeron-Manzano & Francisco Manzano-Agugliaro, 2018. "The Electric Bicycle: Worldwide Research Trends," Energies, MDPI, vol. 11(7), pages 1-16, July.
    3. Wells, Peter & Lin, Xiao, 2015. "Spontaneous emergence versus technology management in sustainable mobility transitions: Electric bicycles in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 371-383.
    4. Georgia Apostolou & Angèle Reinders & Karst Geurs, 2018. "An Overview of Existing Experiences with Solar-Powered E-Bikes," Energies, MDPI, vol. 11(8), pages 1-20, August.
    5. Elliot Fishman & Christopher Cherry, 2016. "E-bikes in the Mainstream: Reviewing a Decade of Research," Transport Reviews, Taylor & Francis Journals, vol. 36(1), pages 72-91, January.
    6. Zhao, Chunli & Nielsen, Thomas Alexander Sick & Olafsson, Anton Stahl & Carstensen, Trine Agervig & Meng, Xiaoying, 2018. "Urban form, demographic and socio-economic correlates of walking, cycling, and e-biking: Evidence from eight neighborhoods in Beijing," Transport Policy, Elsevier, vol. 64(C), pages 102-112.
    7. Jones, Tim & Harms, Lucas & Heinen, Eva, 2016. "Motives, perceptions and experiences of electric bicycle owners and implications for health, wellbeing and mobility," Journal of Transport Geography, Elsevier, vol. 53(C), pages 41-49.
    8. Yide Liu & Ivan Ka Wai Lai, 2020. "The Effects of Environmental Policy and the Perception of Electric Motorcycles on the Acceptance of Electric Motorcycles: An Empirical Study in Macau," SAGE Open, , vol. 10(1), pages 21582440198, January.
    9. Lin, Xiao & Wells, Peter & Sovacool, Benjamin K., 2017. "Benign mobility? Electric bicycles, sustainable transport consumption behaviour and socio-technical transitions in Nanjing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 223-234.
    10. Ziwen Ling & Christopher R. Cherry & John H. MacArthur & Jonathan X. Weinert, 2017. "Differences of Cycling Experiences and Perceptions between E-Bike and Bicycle Users in the United States," Sustainability, MDPI, vol. 9(9), pages 1-18, September.
    11. Synek, Stefan & Koenigstorfer, Joerg, 2018. "Exploring adoption determinants of tax-subsidized company-leasing bicycles from the perspective of German employers and employees," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 238-260.
    12. Jadwiga Biegańska & Elżbieta Grzelak-Kostulska & Michał Adam Kwiatkowski, 2021. "A Typology of Attitudes towards the E-Bike against the Background of the Traditional Bicycle and the Car," Energies, MDPI, vol. 14(24), pages 1-21, December.
    13. Cherry, Christopher R. & Yang, Hongtai & Jones, Luke R. & He, Min, 2016. "Dynamics of electric bike ownership and use in Kunming, China," Transport Policy, Elsevier, vol. 45(C), pages 127-135.
    14. Jin, Sheng & Qu, Xiaobo & Zhou, Dan & Xu, Cheng & Ma, Dongfang & Wang, Dianhai, 2015. "Estimating cycleway capacity and bicycle equivalent unit for electric bicycles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 225-248.
    15. Zhang, Hua & Shaheen, Susan PhD & Chen, Xingpeng, 2013. "Bicycle Evolution in China: From the 1900s to the Present," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt05k9k6b6, Institute of Transportation Studies, UC Berkeley.
    16. Nematchoua, ModesteKameni & Deuse, Caroline & Cools, Mario & Reiter, Sigrid, 2020. "Evaluation of the potential of classic and electric bicycle commuting as an impetus for the transition towards environmentally sustainable cities: A case study of the university campuses in Liege, Bel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    17. Plazier, Paul A. & Weitkamp, Gerd & van den Berg, Agnes E., 2017. "“Cycling was never so easy!” An analysis of e-bike commuters' motives, travel behaviour and experiences using GPS-tracking and interviews," Journal of Transport Geography, Elsevier, vol. 65(C), pages 25-34.
    18. Wolf, Angelika & Seebauer, Sebastian, 2014. "Technology adoption of electric bicycles: A survey among early adopters," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 196-211.
    19. Lin, Xiao & Wells, Peter & Sovacool, Benjamin K., 2018. "The death of a transport regime? The future of electric bicycles and transportation pathways for sustainable mobility in China," Technological Forecasting and Social Change, Elsevier, vol. 132(C), pages 255-267.
    20. Tomasz Bieliński & Łukasz Dopierała & Maciej Tarkowski & Agnieszka Ważna, 2020. "Lessons from Implementing a Metropolitan Electric Bike Sharing System," Energies, MDPI, vol. 13(23), pages 1-21, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt6g79m3xx. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.