IDEAS home Printed from
   My bibliography  Save this paper

Comparing Generalized Median Voter Schemes According to their Manipulability


  • R. Pablo Arribillaga
  • Jordi Massó


We propose a simple criterion to compare generalized median voter schemes according to their manipulability. We identify three necessary and sufficient conditions for the comparability of two generalized median voter schemes in terms of their vulnerability to manipulation. The three conditions are stated using the two associated families of monotonic fixed ballots and depend very much on the power each agent has to unilaterally change the outcomes of the two generalized median voter schemes. We perform a specific analysis of all median voter schemes, the anonymous subfamily of generalized median voter schemes.

Suggested Citation

  • R. Pablo Arribillaga & Jordi Massó, 2014. "Comparing Generalized Median Voter Schemes According to their Manipulability," Working Papers 753, Barcelona Graduate School of Economics.
  • Handle: RePEc:bge:wpaper:753

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Serizawa Shigehiro, 1995. "Power of Voters and Domain of Preferences Where Voting by Committees Is Strategy-Proof," Journal of Economic Theory, Elsevier, vol. 67(2), pages 599-608, December.
    2. Parag A. Pathak & Tayfun Sönmez, 2013. "School Admissions Reform in Chicago and England: Comparing Mechanisms by Their Vulnerability to Manipulation," American Economic Review, American Economic Association, vol. 103(1), pages 80-106, February.
    3. Ching, Stephen & Serizawa, Shigehiro, 1998. "A Maximal Domain for the Existence of Strategy-Proof Rules," Journal of Economic Theory, Elsevier, vol. 78(1), pages 157-166, January.
    4. Barbera, Salvador & Masso, Jordi & Neme, Alejandro, 1997. "Voting under Constraints," Journal of Economic Theory, Elsevier, vol. 76(2), pages 298-321, October.
    5. H. Moulin, 1980. "On strategy-proofness and single peakedness," Public Choice, Springer, vol. 35(4), pages 437-455, January.
    6. Berga, Dolors & Serizawa, Shigehiro, 2000. "Maximal Domain for Strategy-Proof Rules with One Public Good," Journal of Economic Theory, Elsevier, vol. 90(1), pages 39-61, January.
    7. Kentaro Hatsumi & Dolors Berga & Shigehiro Serizawa, 2014. "A maximal domain for strategy-proof and no-vetoer rules in the multi-object choice model," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(1), pages 153-168, February.
    8. Kalai, Ehud & Muller, Eitan, 1977. "Characterization of domains admitting nondictatorial social welfare functions and nonmanipulable voting procedures," Journal of Economic Theory, Elsevier, vol. 16(2), pages 457-469, December.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Atila Abdulkadiroglu & Yeon-Koo Che & Parag A. Pathak & Alvin E. Roth & Olivier Tercieux, 2017. "Minimizing Justified Envy in School Choice: The Design of New Orleans' OneApp," NBER Working Papers 23265, National Bureau of Economic Research, Inc.
    2. Martin Van der linden, 2016. "Deferred acceptance is minimally manipulable," Vanderbilt University Department of Economics Working Papers 16-00019, Vanderbilt University Department of Economics.
    3. Protopapas, Panos, 2018. "On strategy-proofness and single-peakedness: median-voting over intervals," MPRA Paper 83939, University Library of Munich, Germany.
    4. Matias Nunez & Dimitrios Xefteris, 2016. "Unanimous Implementation: A Case For Approval Mechanisms," Working Papers hal-01270275, HAL.
    5. DECERF, Benoit & VAN DER LINDEN, Martin, 2016. "A criterion to compare mechanisms when solutions are not unique, with applications to constrained school choice," CORE Discussion Papers 2016033, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. Achuthankutty, Gopakumar & Roy, Souvik, 2017. "On Single-peaked Domains and Min-max Rules," MPRA Paper 81375, University Library of Munich, Germany.

    More about this item


    generalized median voting schemes; strategy-proofness; anonymity;

    JEL classification:

    • C78 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Bargaining Theory; Matching Theory
    • D78 - Microeconomics - - Analysis of Collective Decision-Making - - - Positive Analysis of Policy Formulation and Implementation

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bge:wpaper:753. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Bruno Guallar). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.