IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.08082.html
   My bibliography  Save this paper

Prudential Reliability of Large Language Models in Reinsurance: Governance, Assurance, and Capital Efficiency

Author

Listed:
  • Stella C. Dong

Abstract

This paper develops a prudential framework for assessing the reliability of large language models (LLMs) in reinsurance. A five-pillar architecture--governance, data lineage, assurance, resilience, and regulatory alignment--translates supervisory expectations from Solvency II, SR 11-7, and guidance from EIOPA (2025), NAIC (2023), and IAIS (2024) into measurable lifecycle controls. The framework is implemented through the Reinsurance AI Reliability and Assurance Benchmark (RAIRAB), which evaluates whether governance-embedded LLMs meet prudential standards for grounding, transparency, and accountability. Across six task families, retrieval-grounded configurations achieved higher grounding accuracy (0.90), reduced hallucination and interpretive drift by roughly 40%, and nearly doubled transparency. These mechanisms lower informational frictions in risk transfer and capital allocation, showing that existing prudential doctrines already accommodate reliable AI when governance is explicit, data are traceable, and assurance is verifiable.

Suggested Citation

  • Stella C. Dong, 2025. "Prudential Reliability of Large Language Models in Reinsurance: Governance, Assurance, and Capital Efficiency," Papers 2511.08082, arXiv.org.
  • Handle: RePEc:arx:papers:2511.08082
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.08082
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.08082. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.