IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.05030.html
   My bibliography  Save this paper

The Shape of Markets: Machine learning modeling and Prediction Using 2-Manifold Geometries

Author

Listed:
  • Panagiotis G. Papaioannou
  • Athanassios N. Yannacopoulos

Abstract

We introduce a Geometry Informed Model for financial forecasting by embedding high dimensional market data onto constant curvature 2manifolds. Guided by the uniformization theorem, we model market dynamics as Brownian motion on spherical S2, Euclidean R2, and hyperbolic H2 geometries. We further include the torus T, a compact, flat manifold admissible as a quotient space of the Euclidean plane anticipating its relevance for capturing cyclical dynamics. Manifold learning techniques infer the latent curvature from financial data, revealing the torus as the best performing geometry. We interpret this result through a macroeconomic lens, the torus circular dimensions align with endogenous cycles in output, interest rates, and inflation described by IS LM theory. Our findings demonstrate the value of integrating differential geometry with data-driven inference for financial modeling.

Suggested Citation

  • Panagiotis G. Papaioannou & Athanassios N. Yannacopoulos, 2025. "The Shape of Markets: Machine learning modeling and Prediction Using 2-Manifold Geometries," Papers 2511.05030, arXiv.org, revised Nov 2025.
  • Handle: RePEc:arx:papers:2511.05030
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.05030
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.05030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.