IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.02632.html
   My bibliography  Save this paper

Distributionally Robust Synthetic Control: Ensuring Robustness Against Highly Correlated Controls and Weight Shifts

Author

Listed:
  • Taehyeon Koo
  • Zijian Guo

Abstract

The synthetic control method estimates the causal effect by comparing the outcomes of a treated unit to a weighted average of control units that closely match the pre-treatment outcomes of the treated unit. This method presumes that the relationship between the potential outcomes of the treated and control units remains consistent before and after treatment. However, the estimator may become unreliable when these relationships shift or when control units are highly correlated. To address these challenges, we introduce the Distributionally Robust Synthetic Control (DRoSC) method by accommodating potential shifts in relationships and addressing high correlations among control units. The DRoSC method targets a new causal estimand defined as the optimizer of a worst-case optimization problem that checks through all possible synthetic weights that comply with the pre-treatment period. When the identification conditions for the classical synthetic control method hold, the DRoSC method targets the same causal effect as the synthetic control. When these conditions are violated, we show that this new causal estimand is a conservative proxy of the non-identifiable causal effect. We further show that the limiting distribution of the DRoSC estimator is non-normal and propose a novel inferential approach to characterize this non-normal limiting distribution. We demonstrate its finite-sample performance through numerical studies and an analysis of the economic impact of terrorism in the Basque Country.

Suggested Citation

  • Taehyeon Koo & Zijian Guo, 2025. "Distributionally Robust Synthetic Control: Ensuring Robustness Against Highly Correlated Controls and Weight Shifts," Papers 2511.02632, arXiv.org.
  • Handle: RePEc:arx:papers:2511.02632
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.02632
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.02632. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.