IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1912.07120.html
   My bibliography  Save this paper

Prediction Intervals for Synthetic Control Methods

Author

Listed:
  • Matias D. Cattaneo
  • Yingjie Feng
  • Rocio Titiunik

Abstract

Uncertainty quantification is a fundamental problem in the analysis and interpretation of synthetic control (SC) methods. We develop conditional prediction intervals in the SC framework, and provide conditions under which these intervals offer finite-sample probability guarantees. Our method allows for covariate adjustment and non-stationary data. The construction begins by noting that the statistical uncertainty of the SC prediction is governed by two distinct sources of randomness: one coming from the construction of the (likely misspecified) SC weights in the pre-treatment period, and the other coming from the unobservable stochastic error in the post-treatment period when the treatment effect is analyzed. Accordingly, our proposed prediction intervals are constructed taking into account both sources of randomness. For implementation, we propose a simulation-based approach along with finite-sample-based probability bound arguments, naturally leading to principled sensitivity analysis methods. We illustrate the numerical performance of our methods using empirical applications and a small simulation study. \texttt{Python}, \texttt{R} and \texttt{Stata} software packages implementing our methodology are available.

Suggested Citation

  • Matias D. Cattaneo & Yingjie Feng & Rocio Titiunik, 2019. "Prediction Intervals for Synthetic Control Methods," Papers 1912.07120, arXiv.org, revised Sep 2021.
  • Handle: RePEc:arx:papers:1912.07120
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1912.07120
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Horiuchi, Yusaku & Mayerson, Asher, 2015. "The Opportunity Cost of Conflict: Statistically Comparing Israel and Synthetic Israel," Political Science Research and Methods, Cambridge University Press, vol. 3(3), pages 609-618, September.
    2. Kathleen T. Li, 2020. "Statistical Inference for Average Treatment Effects Estimated by Synthetic Control Methods," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(532), pages 2068-2083, December.
    3. Belloni, Alexandre & Chernozhukov, Victor & Chetverikov, Denis & Fernández-Val, Iván, 2019. "Conditional quantile processes based on series or many regressors," Journal of Econometrics, Elsevier, vol. 213(1), pages 4-29.
    4. Alberto Abadie & Javier Gardeazabal, 2003. "The Economic Costs of Conflict: A Case Study of the Basque Country," American Economic Review, American Economic Association, vol. 93(1), pages 113-132, March.
    5. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2012. "Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors," Papers 1212.6906, arXiv.org, revised Jan 2018.
    6. Abadie, Alberto & Diamond, Alexis & Hainmueller, Jens, 2010. "Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California’s Tobacco Control Program," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 493-505.
    7. Doukhan, Paul & Louhichi, Sana, 1999. "A new weak dependence condition and applications to moment inequalities," Stochastic Processes and their Applications, Elsevier, vol. 84(2), pages 313-342, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianqing Fan & Ricardo Masini & Marcelo C. Medeiros, 2021. "Bridging factor and sparse models," Papers 2102.11341, arXiv.org, revised Sep 2022.
    2. Dennis Shen & Peng Ding & Jasjeet Sekhon & Bin Yu, 2022. "Same Root Different Leaves: Time Series and Cross-Sectional Methods in Panel Data," Papers 2207.14481, arXiv.org, revised Oct 2022.
    3. Rohan Best & Paul J. Burke, 2019. "Macroeconomic impacts of the 2010 earthquake in Haiti," Empirical Economics, Springer, vol. 56(5), pages 1647-1681, May.
    4. Andrii Melnychuk, 2024. "Synthetic Controls with spillover effects: A comparative study," Papers 2405.01645, arXiv.org.
    5. Alou Adessé Dama, 2021. "Exploring Tilly’s Theory : Violent Conflicts and Tax Revenue in Sub-Saharan Africa," CERDI Working papers hal-03401539, HAL.
    6. Carvalho, Carlos & Masini, Ricardo & Medeiros, Marcelo C., 2018. "ArCo: An artificial counterfactual approach for high-dimensional panel time-series data," Journal of Econometrics, Elsevier, vol. 207(2), pages 352-380.
    7. Julia Bluszcz & Marica Valente, 2022. "The Economic Costs of Hybrid Wars: The Case of Ukraine," Defence and Peace Economics, Taylor & Francis Journals, vol. 33(1), pages 1-25, January.
    8. David Gilchrist & Thomas Emery & Nuno Garoupa & Rok Spruk, 2023. "Synthetic Control Method: A tool for comparative case studies in economic history," Journal of Economic Surveys, Wiley Blackwell, vol. 37(2), pages 409-445, April.
    9. Lea Bottmer & Guido Imbens & Jann Spiess & Merrill Warnick, 2021. "A Design-Based Perspective on Synthetic Control Methods," Papers 2101.09398, arXiv.org, revised Jul 2023.
    10. Dennis Shen & Peng Ding & Jasjeet Sekhon & Bin Yu, 2023. "Same Root Different Leaves: Time Series and Cross‐Sectional Methods in Panel Data," Econometrica, Econometric Society, vol. 91(6), pages 2125-2154, November.
    11. Zongwu Cai & Jinyan Li, 2024. "Econometric Evaluation of the China-US Trade War Effects," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202419, University of Kansas, Department of Economics, revised Apr 2025.
    12. Niklas Potrafke & Luisa Dörr & Klaus Gründler & Tuuli Tähtinen & Luisa Dörr, 2025. "Female Leaders and the Representation of Women in Government," CESifo Working Paper Series 11851, CESifo.
    13. Firat Bilgel & Burhan Can Karahasan, 2019. "Thirty Years of Conflict and Economic Growth in Turkey: A Synthetic Control Approach," Defence and Peace Economics, Taylor & Francis Journals, vol. 30(5), pages 609-631, July.
    14. Pier Basaglia & Sophie M. Behr & Moritz A. Drupp, 2023. "De-Fueling Externalities: How Tax Salience and Fuel Substitution Mediate Climate and Health Benefits," Discussion Papers of DIW Berlin 2041, DIW Berlin, German Institute for Economic Research.
    15. Claudia Shi & Dhanya Sridhar & Vishal Misra & David M. Blei, 2021. "On the Assumptions of Synthetic Control Methods," Papers 2112.05671, arXiv.org, revised Dec 2021.
    16. Aleksandar Kešeljević & Rok Spruk, 2024. "Estimating the effects of Syrian civil war," Empirical Economics, Springer, vol. 66(2), pages 671-703, February.
    17. Kathleen T. Li & Christophe Van den Bulte, 2023. "Augmented Difference-in-Differences," Marketing Science, INFORMS, vol. 42(4), pages 746-767, July.
    18. Ignacio Martinez & Jaume Vives-i-Bastida, 2022. "Bayesian and Frequentist Inference for Synthetic Controls," Papers 2206.01779, arXiv.org, revised Jul 2024.
    19. Stefan Seifert & Marica Valente, 2018. "An Offer that you Can't Refuse? Agrimafias and Migrant Labor on Vineyards in Southern Italy," Discussion Papers of DIW Berlin 1735, DIW Berlin, German Institute for Economic Research.
    20. Kathleen T. Li, 2024. "Frontiers: A Simple Forward Difference-in-Differences Method," Marketing Science, INFORMS, vol. 43(2), pages 267-279, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1912.07120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.