IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2510.23540.html
   My bibliography  Save this paper

The causal interpretation of panel vector autoregressions

Author

Listed:
  • Raimondo Pala

Abstract

This paper discusses the different contemporaneous causal interpretations of Panel Vector Autoregressions (PVAR). I show that the interpretation of PVARs depends on the distribution of the causing variable, and can range from average treatment effects, to average causal responses, to a combination of the two. If the researcher is willing to postulate a no residual autocorrelation assumption, and some units can be thought of as controls, PVAR can identify average treatment effects on the treated. This method complements the toolkits already present in the literature, such as staggered-DiD, or LP-DiD, as it formulates assumptions in the residuals, and not in the outcome variables. Such a method features a notable advantage: it allows units to be ``sparsely'' treated, capturing the impact of interventions on the innovation component of the outcome variables. I provide an example related to the evaluation of the effects of natural disasters economic activity at the weekly frequency in the US.I conclude by discussing solutions to potential violations of the SUTVA assumption arising from interference.

Suggested Citation

  • Raimondo Pala, 2025. "The causal interpretation of panel vector autoregressions," Papers 2510.23540, arXiv.org.
  • Handle: RePEc:arx:papers:2510.23540
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2510.23540
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Taylor, Alan M. & Dube, Arindrajit & Girardi, Daniele & Jordà , Òscar, 2023. "A Local Projections Approach to Difference-in-Differences Event Studies," CEPR Discussion Papers 18141, C.E.P.R. Discussion Papers.
    2. Charles F. Manski, 2013. "Identification of treatment response with social interactions," Econometrics Journal, Royal Economic Society, vol. 16(1), pages 1-23, February.
    3. Eric Strobl, 2011. "The Economic Growth Impact of Hurricanes: Evidence from U.S. Coastal Counties," The Review of Economics and Statistics, MIT Press, vol. 93(2), pages 575-589, May.
    4. Card, David & Krueger, Alan B, 1994. "Minimum Wages and Employment: A Case Study of the Fast-Food Industry in New Jersey and Pennsylvania," American Economic Review, American Economic Association, vol. 84(4), pages 772-793, September.
    5. David Card, 1990. "The Impact of the Mariel Boatlift on the Miami Labor Market," ILR Review, Cornell University, ILR School, vol. 43(2), pages 245-257, January.
    6. Mark Gertler & Peter Karadi, 2015. "Monetary Policy Surprises, Credit Costs, and Economic Activity," American Economic Journal: Macroeconomics, American Economic Association, vol. 7(1), pages 44-76, January.
    7. Montiel Olea, José L. & Stock, James H. & Watson, Mark W., 2021. "Inference in Structural Vector Autoregressions identified with an external instrument," Journal of Econometrics, Elsevier, vol. 225(1), pages 74-87.
    8. Iavor Bojinov & Neil Shephard, 2019. "Time Series Experiments and Causal Estimands: Exact Randomization Tests and Trading," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(528), pages 1665-1682, October.
    9. Christiane Baumeister & Danilo Leiva-León & Eric Sims, 2024. "Tracking Weekly State-Level Economic Conditions," The Review of Economics and Statistics, MIT Press, vol. 106(2), pages 483-504, March.
    10. Raimondo Pala, 2025. "Identification, estimation and inference in Panel Vector Autoregressions using external instruments," Papers 2511.19372, arXiv.org.
    11. Christiane Baumeister & James D. Hamilton, 2015. "Sign Restrictions, Structural Vector Autoregressions, and Useful Prior Information," Econometrica, Econometric Society, vol. 83(5), pages 1963-1999, September.
    12. Christiane Baumeister & James D. Hamilton, 2019. "Structural Interpretation of Vector Autoregressions with Incomplete Identification: Revisiting the Role of Oil Supply and Demand Shocks," American Economic Review, American Economic Association, vol. 109(5), pages 1873-1910, May.
    13. Arindrajit Dube & Daniele Girardi & Òscar Jordà & Alan M. Taylor, 2023. "A Local Projections Approach to Difference-in-Differences," NBER Working Papers 31184, National Bureau of Economic Research, Inc.
    14. Sun, Liyang & Abraham, Sarah, 2021. "Estimating dynamic treatment effects in event studies with heterogeneous treatment effects," Journal of Econometrics, Elsevier, vol. 225(2), pages 175-199.
    15. Vazquez-Bare, Gonzalo, 2023. "Identification and estimation of spillover effects in randomized experiments," Journal of Econometrics, Elsevier, vol. 237(1).
    16. Gonzalo Vazquez-Bare, 2023. "Causal Spillover Effects Using Instrumental Variables," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(543), pages 1911-1922, July.
    17. Mertens, Karel & Ravn, Morten O., 2014. "A reconciliation of SVAR and narrative estimates of tax multipliers," Journal of Monetary Economics, Elsevier, vol. 68(S), pages 1-19.
    18. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    19. Callaway, Brantly & Sant’Anna, Pedro H.C., 2021. "Difference-in-Differences with multiple time periods," Journal of Econometrics, Elsevier, vol. 225(2), pages 200-230.
    20. Laura Forastiere & Edoardo M. Airoldi & Fabrizia Mealli, 2021. "Identification and Estimation of Treatment and Interference Effects in Observational Studies on Networks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(534), pages 901-918, April.
    21. Enrico Moretti, 2014. "Local Economic Development, Agglomeration Economies, and the Big Push: 100 Years of Evidence from the Tennessee Valley Authority," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 129(1), pages 275-331.
    22. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
    23. Beirne, John & Dafermos, Yannis & Kriwoluzky, Alexander & Renzhi, Nuobu & Volz, Ulrich & Wittich, Jana, 2022. "Natural Disasters and Inflation in the Euro Area," VfS Annual Conference 2022 (Basel): Big Data in Economics 264132, Verein für Socialpolitik / German Economic Association.
    24. Abadie, Alberto & Diamond, Alexis & Hainmueller, Jens, 2010. "Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California’s Tobacco Control Program," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 493-505.
    25. Faccia, Donata & Parker, Miles & Stracca, Livio, 2021. "Feeling the heat: extreme temperatures and price stability," Working Paper Series 2626, European Central Bank.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raimondo Pala, 2025. "Identification, estimation and inference in Panel Vector Autoregressions using external instruments," Papers 2511.19372, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robin Braun & Ralf Brüggemann, 2017. "Identification of SVAR Models by Combining Sign Restrictions With External Instruments," Working Paper Series of the Department of Economics, University of Konstanz 2017-07, Department of Economics, University of Konstanz.
    2. Raimondo Pala, 2025. "Control VAR: a counterfactual based approach to inference in macroeconomics," Papers 2510.23762, arXiv.org.
    3. Hao, Shiming, 2021. "True structure change, spurious treatment effect? A novel approach to disentangle treatment effects from structure changes," MPRA Paper 108679, University Library of Munich, Germany.
    4. Yan, Wenying & Chen, Yusheng & Wang, Yanmei, 2025. "Efficiency improvement effect of clean energy transformation —A quasi-natural experiment based on China's clean heating policy," Energy, Elsevier, vol. 334(C).
    5. Peter Hull & Michal Kolesár & Christopher Walters, 2022. "Labor by design: contributions of David Card, Joshua Angrist, and Guido Imbens," Scandinavian Journal of Economics, Wiley Blackwell, vol. 124(3), pages 603-645, July.
    6. Athey, Susan & Imbens, Guido W., 2022. "Design-based analysis in Difference-In-Differences settings with staggered adoption," Journal of Econometrics, Elsevier, vol. 226(1), pages 62-79.
    7. Ramey, V.A., 2016. "Macroeconomic Shocks and Their Propagation," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 71-162, Elsevier.
    8. Herwartz, Helmut & Rohloff, Hannes & Wang, Shu, 2022. "Proxy SVAR identification of monetary policy shocks - Monte Carlo evidence and insights for the US," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).
    9. Fiammetta Menchetti & Fabrizio Cipollini & Fabrizia Mealli, 2023. "Combining counterfactual outcomes and ARIMA models for policy evaluation," The Econometrics Journal, Royal Economic Society, vol. 26(1), pages 1-24.
    10. Coulombe, Raphaelle G. & Rao, Akhil, 2025. "Fires and local labor markets," Journal of Environmental Economics and Management, Elsevier, vol. 130(C).
    11. Davide Viviano & Jelena Bradic, 2021. "Dynamic covariate balancing: estimating treatment effects over time with potential local projections," Papers 2103.01280, arXiv.org, revised Jan 2024.
    12. Giacomini, Raffaella & Kitagawa, Toru & Read, Matthew, 2022. "Robust Bayesian inference in proxy SVARs," Journal of Econometrics, Elsevier, vol. 228(1), pages 107-126.
    13. Fabra, Natalia & Gutiérrez, Eduardo & Lacuesta, Aitor & Ramos, Roberto, 2024. "Do renewable energy investments create local jobs?," Journal of Public Economics, Elsevier, vol. 239(C).
    14. Wei, Yanfeng & Qiu, Feng & An, Henry & Zhang, Xindon & Li, Changhong & Guo, Xiaoying, 2024. "Exogenous oil supply shocks and global agricultural commodity prices: The role of biofuels," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 394-414.
    15. Jinglong Zhao, 2024. "Experimental Design For Causal Inference Through An Optimization Lens," Papers 2408.09607, arXiv.org, revised Aug 2024.
    16. Adrien Bussy & Annalisa Tassi, 2025. "Cross-border value-added tax fraud in the European Union," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 161(1), pages 1-23, December.
    17. repec:fip:fedrwp:98029 is not listed on IDEAS
    18. Mark Kattenberg & Bas Scheer & Jurre Thiel, 2023. "Causal forests with fixed effects for treatment effect heterogeneity in difference-in-differences," CPB Discussion Paper 452, CPB Netherlands Bureau for Economic Policy Analysis.
    19. Deng, Liuchun & Müller, Steffen & Plümpe, Verena & Stegmaier, Jens, 2024. "Robots, occupations, and worker age: A production-unit analysis of employment," European Economic Review, Elsevier, vol. 170(C).
    20. Hans-Bernd Schaefer & Rok Spruk, 2024. "Islamic Law, Western European Law and the Roots of Middle East's Long Divergence: a Comparative Empirical Investigation (800-1600)," Papers 2401.14435, arXiv.org, revised Mar 2024.
    21. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2510.23540. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.