IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2510.04357.html
   My bibliography  Save this paper

From News to Returns: A Granger-Causal Hypergraph Transformer on the Sphere

Author

Listed:
  • Anoushka Harit
  • Zhongtian Sun
  • Jongmin Yu

Abstract

We propose the Causal Sphere Hypergraph Transformer (CSHT), a novel architecture for interpretable financial time-series forecasting that unifies \emph{Granger-causal hypergraph structure}, \emph{Riemannian geometry}, and \emph{causally masked Transformer attention}. CSHT models the directional influence of financial news and sentiment on asset returns by extracting multivariate Granger-causal dependencies, which are encoded as directional hyperedges on the surface of a hypersphere. Attention is constrained via angular masks that preserve both temporal directionality and geometric consistency. Evaluated on S\&P 500 data from 2018 to 2023, including the 2020 COVID-19 shock, CSHT consistently outperforms baselines across return prediction, regime classification, and top-asset ranking tasks. By enforcing predictive causal structure and embedding variables in a Riemannian manifold, CSHT delivers both \emph{robust generalisation across market regimes} and \emph{transparent attribution pathways} from macroeconomic events to stock-level responses. These results suggest that CSHT is a principled and practical solution for trustworthy financial forecasting under uncertainty.

Suggested Citation

  • Anoushka Harit & Zhongtian Sun & Jongmin Yu, 2025. "From News to Returns: A Granger-Causal Hypergraph Transformer on the Sphere," Papers 2510.04357, arXiv.org.
  • Handle: RePEc:arx:papers:2510.04357
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2510.04357
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fuli Feng & Xiangnan He & Xiang Wang & Cheng Luo & Yiqun Liu & Tat-Seng Chua, 2018. "Temporal Relational Ranking for Stock Prediction," Papers 1809.09441, arXiv.org, revised Jan 2019.
    2. Barberis, Nicholas & Shleifer, Andrei & Vishny, Robert, 1998. "A model of investor sentiment," Journal of Financial Economics, Elsevier, vol. 49(3), pages 307-343, September.
    3. Paul C. Tetlock, 2007. "Giving Content to Investor Sentiment: The Role of Media in the Stock Market," Journal of Finance, American Finance Association, vol. 62(3), pages 1139-1168, June.
    4. Zijuan Zhao & Kai Yang & Jinli Guo, 2024. "Heterogeneous hypergraph representation learning for link prediction," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(10), pages 1-9, October.
    5. Soroush Omranpour & Guillaume Rabusseau & Reihaneh Rabbany, 2024. "Higher Order Transformers: Enhancing Stock Movement Prediction On Multimodal Time-Series Data," Papers 2412.10540, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Keval Amin & Erica Harris, 2022. "The Effect of Investor Sentiment on Nonprofit Donations," Journal of Business Ethics, Springer, vol. 175(2), pages 427-450, January.
    2. Bijl, Laurens & Kringhaug, Glenn & Molnár, Peter & Sandvik, Eirik, 2016. "Google searches and stock returns," International Review of Financial Analysis, Elsevier, vol. 45(C), pages 150-156.
    3. Nguyen, Huan Huu & Ngo, Vu Minh & Pham, Luan Minh & Van Nguyen, Phuc, 2025. "Investor sentiment and market returns: A multi-horizon analysis," Research in International Business and Finance, Elsevier, vol. 74(C).
    4. Gric, Zuzana & Ehrenbergerova, Dominika & Hodula, Martin, 2022. "The power of sentiment: Irrational beliefs of households and consumer loan dynamics," Journal of Financial Stability, Elsevier, vol. 59(C).
    5. Ahmad, Khurshid & Han, JingGuang & Hutson, Elaine & Kearney, Colm & Liu, Sha, 2016. "Media-expressed negative tone and firm-level stock returns," Journal of Corporate Finance, Elsevier, vol. 37(C), pages 152-172.
    6. Abudy, Menachem (Meni) & Mugerman, Yevgeny & Shust, Efrat, 2022. "The Winner Takes It All: Investor Sentiment and the Eurovision Song Contest," Journal of Banking & Finance, Elsevier, vol. 137(C).
    7. Tao Chen & Erin P. K. So & Isabel K. M. Yan, 2021. "Are crises sentimental?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 962-985, January.
    8. Guo, Kun & Sun, Yi & Qian, Xin, 2017. "Can investor sentiment be used to predict the stock price? Dynamic analysis based on China stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 390-396.
    9. Jiao, Peiran & Veiga, André & Walther, Ansgar, 2020. "Social media, news media and the stock market," Journal of Economic Behavior & Organization, Elsevier, vol. 176(C), pages 63-90.
    10. Zhang, Manling & Chen, Jing, 2025. "Spatial spillovers of media sentiment divergence in the stock market: A dynamic spatial Durbin approach," Economics Letters, Elsevier, vol. 250(C).
    11. repec:zbw:bofitp:2015_025 is not listed on IDEAS
    12. Bennett, Donyetta & Mekelburg, Erik & Strauss, Jack & Williams, T.H., 2024. "Unlocking the black box of sentiment and cryptocurrency: What, which, why, when and how?," Global Finance Journal, Elsevier, vol. 60(C).
    13. Gric, Zuzana & Bajzík, Josef & Badura, Ondřej, 2023. "Does sentiment affect stock returns? A meta-analysis across survey-based measures," International Review of Financial Analysis, Elsevier, vol. 89(C).
    14. Arcuri, Maria Cristina & Gandolfi, Gino & Russo, Ivan, 2023. "Does fake news impact stock returns? Evidence from US and EU stock markets," Journal of Economics and Business, Elsevier, vol. 125.
    15. J. Daniel Aromi, 2014. "El mercado cambiario y los contenidos en la prensa: un analisis empírico," Estudios Economicos, Universidad Nacional del Sur, Departamento de Economia, vol. 31(63), pages 3-23, july-dece.
    16. Xin Li & Kun Chen & Sherry X. Sun & Terrance Fung & Huaiqing Wang & Daniel D. Zeng, 2016. "A Commonsense Knowledge-Enabled Textual Analysis Approach for Financial Market Surveillance," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 278-294, May.
    17. Di, Li & Shaiban, Mohammed Sharaf & Hasanov, Akram Shavkatovich, 2021. "The power of investor sentiment in explaining bank stock performance: Listed conventional vs. Islamic banks," Pacific-Basin Finance Journal, Elsevier, vol. 66(C).
    18. Paresh Kumar Narayan & Seema Narayan & Siroos Khademalomoom & Dinh Hoang Bach Phan, 2018. "Do Terrorist Attacks Impact Exchange Rate Behavior? New International Evidence," Economic Inquiry, Western Economic Association International, vol. 56(1), pages 547-561, January.
    19. Fernandez-Perez, Adrian & Fuertes, Ana-Maria & Gonzalez-Fernandez, Marcos & Miffre, Joelle, 2020. "Fear of hazards in commodity futures markets," Journal of Banking & Finance, Elsevier, vol. 119(C).
    20. Arslan-Ayaydin, Özgür & Boudt, Kris & Thewissen, James, 2016. "Managers set the tone: Equity incentives and the tone of earnings press releases," Journal of Banking & Finance, Elsevier, vol. 72(S), pages 132-147.
    21. Piñeiro-Chousa, Juan Ramón & López-Cabarcos, M. Ángeles & Pérez-Pico, Ada María, 2016. "Examining the influence of stock market variables on microblogging sentiment," Journal of Business Research, Elsevier, vol. 69(6), pages 2087-2092.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2510.04357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.