IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.21904.html
   My bibliography  Save this paper

A General CoVaR Based on Entropy Pooling

Author

Listed:
  • Yuhong Xu
  • Xinyao Zhao

Abstract

We propose a general CoVaR framework that extends the traditional CoVaR by incorporating diverse expert views and information, such as asset moment characteristics, quantile insights, and perspectives on the relative loss distribution between two assets. To integrate these expert views effectively while minimizing deviations from the prior distribution, we employ the entropy pooling method to derive the posterior distribution, which in turn enables us to compute the general CoVaR. Assuming bivariate normal distributions, we derive its analytical expressions under various perspectives. Sensitivity analysis reveals that CoVaR exhibits a linear relationship with both the expectations of the variables in the views and the differences in expectations between them. In contrast, CoVaR shows nonlinear dependencies with respect to the variance, quantiles, and correlation within these views. Empirical analysis of the US banking system during the Federal Reserve's interest rate hikes demonstrates the effectiveness of the general CoVaR when expert views are appropriately specified. Furthermore, we extend this framework to a general $\Delta$CoVaR, which allows for the assessment of risk spillover effects from various perspectives.

Suggested Citation

  • Yuhong Xu & Xinyao Zhao, 2025. "A General CoVaR Based on Entropy Pooling," Papers 2509.21904, arXiv.org, revised Oct 2025.
  • Handle: RePEc:arx:papers:2509.21904
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.21904
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mensi, Walid & Hammoudeh, Shawkat & Shahzad, Syed Jawad Hussain & Shahbaz, Muhammad, 2017. "Modeling systemic risk and dependence structure between oil and stock markets using a variational mode decomposition-based copula method," Journal of Banking & Finance, Elsevier, vol. 75(C), pages 258-279.
    2. Attilio Meucci, 2010. "Fully Flexible Views: Theory and Practice," Papers 1012.2848, arXiv.org.
    3. Zhao, Jing & Cui, Luansong & Liu, Weiguo & Zhang, Qiwen, 2023. "Extreme risk spillover effects of international oil prices on the Chinese stock market: A GARCH-EVT-Copula-CoVaR approach," Resources Policy, Elsevier, vol. 86(PB).
    4. Emmanouil N. Karimalis & Nikos K. Nomikos, 2018. "Measuring systemic risk in the European banking sector: a copula CoVaR approach," The European Journal of Finance, Taylor & Francis Journals, vol. 24(11), pages 944-975, July.
    5. Li, Tianyuan & Chen, Ping, 2024. "Asset allocation combining macro and micro information–Empirical test based on entropy pool model," Finance Research Letters, Elsevier, vol. 64(C).
    6. Ji, Qiang & Liu, Bing-Yue & Fan, Ying, 2019. "Risk dependence of CoVaR and structural change between oil prices and exchange rates: A time-varying copula model," Energy Economics, Elsevier, vol. 77(C), pages 80-92.
    7. Torri, Gabriele & Giacometti, Rosella & Tichý, Tomáš, 2021. "Network tail risk estimation in the European banking system," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
    8. Weihuan Huang & Nifei Lin & L. Jeff Hong, 2024. "Monte Carlo Estimation of CoVaR," Operations Research, INFORMS, vol. 72(6), pages 2337-2357, November.
    9. Bellavite Pellegrini, Carlo & Cincinelli, Peter & Meoli, Michele & Urga, Giovanni, 2022. "The role of shadow banking in systemic risk in the European financial system," Journal of Banking & Finance, Elsevier, vol. 138(C).
    10. Girardi, Giulio & Tolga Ergün, A., 2013. "Systemic risk measurement: Multivariate GARCH estimation of CoVaR," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3169-3180.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Wei-Zhen & Zhai, Jin-Rui & Jiang, Zhi-Qiang & Wang, Gang-Jin & Zhou, Wei-Xing, 2022. "Predicting tail events in a RIA-EVT-Copula framework," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    2. Bing‐Yue Liu & Qiang Ji & Duc Khuong Nguyen & Ying Fan, 2021. "Dynamic dependence and extreme risk comovement: The case of oil prices and exchange rates," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 2612-2636, April.
    3. Liu, Xiang-dong & Pan, Fei & Cai, Wen-li & Peng, Rui, 2020. "Correlation and risk measurement modeling: A Markov-switching mixed Clayton copula approach," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    4. Qin Wang & Xianhua Li, 2025. "Risk Spillover Effects Between the U.S. and Chinese Green Bond Markets: A Threshold Time-Varying Copula-GARCHSK Approach," Computational Economics, Springer;Society for Computational Economics, vol. 65(6), pages 3605-3631, June.
    5. Zhu, Pengfei & Tang, Yong & Wei, Yu & Lu, Tuantuan, 2021. "Multidimensional risk spillovers among crude oil, the US and Chinese stock markets: Evidence during the COVID-19 epidemic," Energy, Elsevier, vol. 231(C).
    6. Dai, Yun-Shi & Dai, Peng-Fei & Zhou, Wei-Xing, 2023. "Tail dependence structure and extreme risk spillover effects between the international agricultural futures and spot markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
    7. Chen, Lin & Wen, Fenghua & Li, Wanyang & Yin, Hua & Zhao, Lili, 2022. "Extreme risk spillover of the oil, exchange rate to Chinese stock market: Evidence from implied volatility indexes," Energy Economics, Elsevier, vol. 107(C).
    8. Qingli Dong & Lanlan Lian & Qichuan Jiang, 2025. "Risk spillover measurement of carbon trading market considering susceptible factors: A network perspective," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 30(1), pages 493-521, January.
    9. Yang, Kun & Wei, Yu & Li, Shouwei & He, Jianmin, 2020. "Asymmetric risk spillovers between Shanghai and Hong Kong stock markets under China’s capital account liberalization," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    10. Hakim, Arief & Salman, A.N.M. & Syuhada, Khreshna, 2025. "Conditional generalized quantiles as systemic risk measures: Properties, estimation, and application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 235(C), pages 60-84.
    11. Mensi, Walid & Rehman, Mobeen Ur & Vo, Xuan Vinh, 2022. "Spillovers and diversification benefits between oil futures and ASEAN stock markets," Resources Policy, Elsevier, vol. 79(C).
    12. Warshaw, Evan, 2019. "Extreme dependence and risk spillovers across north american equity markets," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 237-251.
    13. Ortega-Jiménez, P. & Sordo, M.A. & Suárez-Llorens, A., 2021. "Stochastic orders and multivariate measures of risk contagion," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 199-207.
    14. Liu, Jiahao & Zhu, Bo & Hu, Xin, 2024. "Systemic risk spillovers among global energy firms: Does geopolitical risk matter?," Energy Economics, Elsevier, vol. 140(C).
    15. Zhao, Yikai & Dai, Runyu & Nagayasu, Jun, 2025. "Generative AI: The transformative impact of ChatGPT on systemic financial risk in Chinese banks," Pacific-Basin Finance Journal, Elsevier, vol. 93(C).
    16. Yang, Lu & Cui, Xue & Yang, Lei & Hamori, Shigeyuki & Cai, Xiaojing, 2023. "Risk spillover from international financial markets and China's macro-economy: A MIDAS-CoVaR-QR model," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 55-69.
    17. Xu, Yingying, 2021. "Risk spillover from energy market uncertainties to the Chinese carbon market," Pacific-Basin Finance Journal, Elsevier, vol. 67(C).
    18. Zou, Yingchao & Yu, Lean & Tso, Geoffrey K.F. & He, Kaijian, 2020. "Risk forecasting in the crude oil market: A multiscale Convolutional Neural Network approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    19. Mensi, Walid & Hammoudeh, Shawkat & Shahzad, Syed Jawad Hussain & Al-Yahyaee, Khamis Hamed & Shahbaz, Muhammad, 2017. "Oil and foreign exchange market tail dependence and risk spillovers for MENA, emerging and developed countries: VMD decomposition based copulas," Energy Economics, Elsevier, vol. 67(C), pages 476-495.
    20. Lyu, Yongjian & Zhang, Xinyu & Cao, Jin & Liu, Jiatao & Yang, Mo, 2024. "Quantitative easing and the spillover effects from the crude oil market to other financial markets: Evidence from QE1 to QE3," Journal of International Money and Finance, Elsevier, vol. 140(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.21904. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.