IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.12388.html
   My bibliography  Save this paper

A Decision Theoretic Perspective on Artificial Superintelligence: Coping with Missing Data Problems in Prediction and Treatment Choice

Author

Listed:
  • Jeff Dominitz
  • Charles F. Manski

Abstract

Enormous attention and resources are being devoted to the quest for artificial general intelligence and, even more ambitiously, artificial superintelligence. We wonder about the implications for our methodological research, which aims to help decision makers cope with what econometricians call identification problems, inferential problems in empirical research that do not diminish as sample size grows. Of particular concern are missing data problems in prediction and treatment choice. Essentially all data collection intended to inform decision making is subject to missing data, which gives rise to identification problems. Thus far, we see no indication that the current dominant architecture of machine learning (ML)-based artificial intelligence (AI) systems will outperform humans in this context. In this paper, we explain why we have reached this conclusion and why we see the missing data problem as a cautionary case study in the quest for superintelligence more generally. We first discuss the concept of intelligence, before presenting a decision-theoretic perspective that formalizes the connection between intelligence and identification problems. We next apply this perspective to two leading cases of missing data problems. Then we explain why we are skeptical that AI research is currently on a path toward machines doing better than humans at solving these identification problems.

Suggested Citation

  • Jeff Dominitz & Charles F. Manski, 2025. "A Decision Theoretic Perspective on Artificial Superintelligence: Coping with Missing Data Problems in Prediction and Treatment Choice," Papers 2509.12388, arXiv.org.
  • Handle: RePEc:arx:papers:2509.12388
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.12388
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.12388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.