IDEAS home Printed from https://ideas.repec.org/a/wly/quante/v9y2018i2p541-569.html
   My bibliography  Save this article

Credible ecological inference for medical decisions with personalized risk assessment

Author

Listed:
  • Charles F. Manski

Abstract

This paper studies an identification problem that arises when clinicians seek to personalize patient care by predicting health outcomes conditional on observed patient covariates. Let y be an outcome of interest and let (x=k, w=j) be observed patient covariates. Suppose a clinician wants to choose a care option that maximizes a patient's expected utility conditional on the observed covariates. To accomplish this, the clinician needs to know the conditional probability distribution P(y|x=k, w=j). It is common to have a trustworthy evidence‐based risk assessment that predicts y conditional on a subset of the observed covariates, say x, but not conditional on (x, w). Then the clinician knows P(y|x=k) but not P(y|x=k, w=j). Research on the ecological inference problem studies partial identification of P(y|x, w) given knowledge of P(y|x) and P(w|x). Combining this knowledge with structural assumptions yields tighter conclusions. A psychological literature comparing actuarial predictions and clinical judgments has concluded that clinicians should not attempt to subjectively predict patient outcomes conditional on covariates that are not utilized in evidence‐based risk assessments. I argue that formalizing clinical judgment through analysis of the identification problem can improve risk assessments and care decisions.

Suggested Citation

  • Charles F. Manski, 2018. "Credible ecological inference for medical decisions with personalized risk assessment," Quantitative Economics, Econometric Society, vol. 9(2), pages 541-569, July.
  • Handle: RePEc:wly:quante:v:9:y:2018:i:2:p:541-569
    DOI: 10.3982/QE778
    as

    Download full text from publisher

    File URL: https://doi.org/10.3982/QE778
    Download Restriction: no

    File URL: https://libkey.io/10.3982/QE778?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sheyu Li & Valentyn Litvin & Charles F. Manski, 2022. "Partial Identification of Personalized Treatment Response with Trial-reported Analyses of Binary Subgroups," Papers 2208.03381, arXiv.org, revised Sep 2022.
    2. Yu Gao & Zhenxing Huang & Ning Liu & Jia Yang, 2024. "Are physicians rational under ambiguity?," Journal of Risk and Uncertainty, Springer, vol. 68(2), pages 183-203, April.
    3. Manski, Charles F., 2023. "Probabilistic prediction for binary treatment choice: With focus on personalized medicine," Journal of Econometrics, Elsevier, vol. 234(2), pages 647-663.
    4. Charles F. Manski, 2018. "Reasonable patient care under uncertainty," Health Economics, John Wiley & Sons, Ltd., vol. 27(10), pages 1397-1421, October.
    5. Jeff Dominitz & Charles F. Manski, 2024. "Comprehensive OOS Evaluation of Predictive Algorithms with Statistical Decision Theory," Papers 2403.11016, arXiv.org, revised May 2024.
    6. John Mullahy, 2021. "Discovering treatment effectiveness via median treatment effects—Applications to COVID‐19 clinical trials," Health Economics, John Wiley & Sons, Ltd., vol. 30(5), pages 1050-1069, May.
    7. Charles F Manski & Michael Gmeiner & Anat Tamburc, 2021. "Misguided Use of Observed Covariates to Impute Missing Covariates in Conditional Prediction: A Shrinkage Problem," Papers 2102.11334, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:quante:v:9:y:2018:i:2:p:541-569. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.