IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.07343.html
   My bibliography  Save this paper

Estimating Social Network Models with Link Misclassification

Author

Listed:
  • Arthur Lewbel
  • Xi Qu
  • Xun Tang

Abstract

We propose an adjusted 2SLS estimator for social network models when reported binary network links are misclassified (some zeros reported as ones and vice versa) due, e.g., to survey respondents' recall errors, or lapses in data input. We show misclassification adds new sources of correlation between the regressors and errors, which makes all covariates endogenous and invalidates conventional estimators. We resolve these issues by constructing a novel estimator of misclassification rates and using those estimates to both adjust endogenous peer outcomes and construct new instruments for 2SLS estimation. A distinctive feature of our method is that it does not require structural modeling of link formation. Simulation results confirm our adjusted 2SLS estimator corrects the bias from a naive, unadjusted 2SLS estimator which ignores misclassification and uses conventional instruments. We apply our method to study peer effects in household decisions to participate in a microfinance program in Indian villages.

Suggested Citation

  • Arthur Lewbel & Xi Qu & Xun Tang, 2025. "Estimating Social Network Models with Link Misclassification," Papers 2509.07343, arXiv.org.
  • Handle: RePEc:arx:papers:2509.07343
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.07343
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.07343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.