IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2508.12860.html
   My bibliography  Save this paper

Estimation in linear models with clustered data

Author

Listed:
  • Anna Mikusheva
  • Mikkel S{o}lvsten
  • Baiyun Jing

Abstract

We study linear regression models with clustered data, high-dimensional controls, and a complicated structure of exclusion restrictions. We propose a correctly centered internal IV estimator that accommodates a variety of exclusion restrictions and permits within-cluster dependence. The estimator has a simple leave-out interpretation and remains computationally tractable. We derive a central limit theorem for its quadratic form and propose a robust variance estimator. We also develop inference methods that remain valid under weak identification. Our framework extends classical dynamic panel methods to more general clustered settings. An empirical application of a large-scale fiscal intervention in rural Kenya with spatial interference illustrates the approach.

Suggested Citation

  • Anna Mikusheva & Mikkel S{o}lvsten & Baiyun Jing, 2025. "Estimation in linear models with clustered data," Papers 2508.12860, arXiv.org.
  • Handle: RePEc:arx:papers:2508.12860
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2508.12860
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2508.12860. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.