Author
Abstract
Traditional threshold-based stock networks suffer from subjective parameter selection and inherent limitations: they constrain relationships to binary representations, failing to capture both correlation strength and negative dependencies. To address this, we introduce statistically validated correlation networks that retain only statistically significant correlations via a rigorous t-test of Pearson coefficients. We then propose a novel structure termed the largest strong-correlation balanced module (LSCBM), defined as the maximum-size group of stocks with structural balance (i.e., positive edge-ign products for all triplets) and strong pairwise correlations. This balance condition ensures stable relationships, thus facilitating potential hedging opportunities through negative edges. Theoretically, within a random signed graph model, we establish LSCBM's asymptotic existence, size scaling, and multiplicity under various parameter regimes. To detect LSCBM efficiently, we develop MaxBalanceCore, a heuristic algorithm that leverages network sparsity. Simulations validate its efficiency, demonstrating scalability to networks of up to 10,000 nodes within tens of seconds. Empirical analysis demonstrates that LSCBM identifies core market subsystems that dynamically reorganize in response to economic shifts and crises. In the Chinese stock market (2013-2024), LSCBM's size surges during high-stress periods (e.g., the 2015 crash) and contracts during stable or fragmented regimes, while its composition rotates annually across dominant sectors (e.g., Industrials and Financials).
Suggested Citation
Huan Qing & Xiaofei Xu, 2025.
"Finding Core Balanced Modules in Statistically Validated Stock Networks,"
Papers
2508.04970, arXiv.org.
Handle:
RePEc:arx:papers:2508.04970
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2508.04970. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.