IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2506.14664.html
   My bibliography  Save this paper

An advanced reliability reserve incentivizes flexibility investments while safeguarding the electricity market

Author

Listed:
  • Franziska Klaucke
  • Karsten Neuhoff
  • Alexander Roth
  • Wolf-Peter Schill
  • Leon Stolle

Abstract

To ensure security of supply in the power sector, many countries are already using or discussing the introduction of capacity mechanisms. Two main types of such mechanisms include capacity markets and capacity reserves. Simultaneously, the expansion of variable renewable energy sources increases the need for power sector flexibility, for which there are promising yet often under-utilized options on the demand side. In this paper, we analyze how a centralized capacity market and an advanced reliability reserve with a moderately high activation price affect investments in demand-side flexibility technologies. We do so for a German case study of 2030, using an open-source capacity expansion model and incorporating detailed demand-side flexibility potentials across industry, process heat, and district heating. We show that a centralized capacity market effectively caps peak prices in the wholesale electricity market and thus reduces incentives for investments in demand-side flexibility options. The advanced reliability reserve induces substantially higher flexibility investments while leading to similar overall electricity supply costs and ensuring a similar level of security of supply. The advanced reliability reserve could thus create a learning environment for flexibility technologies to support the transition to climate neutral energy systems. Additionally, an advanced reliability reserve could be introduced faster and is more flexible than a centralized capacity market. While concrete design parameters are yet to be specified, we argue that policymakers should consider the reliability reserve concept in upcoming decision on capacity mechanisms in Germany and beyond.

Suggested Citation

  • Franziska Klaucke & Karsten Neuhoff & Alexander Roth & Wolf-Peter Schill & Leon Stolle, 2025. "An advanced reliability reserve incentivizes flexibility investments while safeguarding the electricity market," Papers 2506.14664, arXiv.org.
  • Handle: RePEc:arx:papers:2506.14664
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2506.14664
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paul Joskow & Jean Tirole, 2007. "Reliability and competitive electricity markets," RAND Journal of Economics, RAND Corporation, vol. 38(1), pages 60-84, March.
    2. Neuhoff, Karsten & Diekmann, Jochen & Kunz, Friedrich & Rüster, Sophia & Schill, Wolf-Peter & Schwenen, Sebastian, 2016. "A coordinated strategic reserve to safeguard the European energy transition," Utilities Policy, Elsevier, vol. 41(C), pages 252-263.
    3. Martin Kittel & Wolf-Peter Schill, 2024. "Measuring the Dunkelflaute: How (not) to analyze variable renewable energy shortage," Papers 2402.06758, arXiv.org, revised Aug 2024.
    4. Carlos Gaete-Morales & Julius Johrens & Florian Heining & Wolf-Peter Schill, 2023. "Power sector effects of alternative options for de-fossilizing heavy-duty vehicles -- go electric, and charge smartly," Papers 2303.16629, arXiv.org, revised May 2024.
    5. Rious, Vincent & Perez, Yannick & Roques, Fabien, 2015. "Which electricity market design to encourage the development of demand response?," Economic Analysis and Policy, Elsevier, vol. 48(C), pages 128-138.
    6. Helin, Kristo & Käki, Anssi & Zakeri, Behnam & Lahdelma, Risto & Syri, Sanna, 2017. "Economic potential of industrial demand side management in pulp and paper industry," Energy, Elsevier, vol. 141(C), pages 1681-1694.
    7. Alexander Roth & Wolf-Peter Schill, 2022. "Geographical balancing of wind power decreases storage needs in a 100% renewable European power sector," Papers 2211.16419, arXiv.org, revised Jun 2023.
    8. Jacob Mays & David P. Morton & Richard P. O’Neill, 2019. "Asymmetric risk and fuel neutrality in electricity capacity markets," Nature Energy, Nature, vol. 4(11), pages 948-956, November.
    9. Newbery, David, 2016. "Missing money and missing markets: Reliability, capacity auctions and interconnectors," Energy Policy, Elsevier, vol. 94(C), pages 401-410.
    10. Bublitz, Andreas & Keles, Dogan & Zimmermann, Florian & Fraunholz, Christoph & Fichtner, Wolf, 2019. "A survey on electricity market design: Insights from theory and real-world implementations of capacity remuneration mechanisms," Energy Economics, Elsevier, vol. 80(C), pages 1059-1078.
    11. Martin Kittel & Alexander Roth & Wolf-Peter Schill, 2024. "Coping with the Dunkelflaute: Power system implications of variable renewable energy droughts in Europe," Papers 2411.17683, arXiv.org, revised Jan 2025.
    12. Sanchez Jimenez, I. & Bruninx, K. & de Vries, L.J., 2025. "Capacity remuneration mechanisms for decarbonized power systems," Applied Energy, Elsevier, vol. 391(C).
    13. Alexander Roth & Carlos Gaete-Morales & Dana Kirchem & Wolf-Peter Schill, 2023. "Power sector benefits of flexible heat pumps," Papers 2307.12918, arXiv.org, revised Oct 2024.
    14. Schill, Wolf-Peter, 2020. "Electricity Storage and the Renewable Energy Transition," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 4(10), pages 2059-2064.
    15. Keles, Dogan & Bublitz, Andreas & Zimmermann, Florian & Genoese, Massimo & Fichtner, Wolf, 2016. "Analysis of design options for the electricity market: The German case," Applied Energy, Elsevier, vol. 183(C), pages 884-901.
    16. Gaete-Morales, Carlos & Kittel, Martin & Roth, Alexander & Schill, Wolf-Peter, 2021. "DIETERpy: A Python framework for the Dispatch and Investment Evaluation Tool with Endogenous Renewables," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 15.
    17. Brown, T. & Schlachtberger, D. & Kies, A. & Schramm, S. & Greiner, M., 2018. "Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system," Energy, Elsevier, vol. 160(C), pages 720-739.
    18. Klaucke, Franziska & Hoffmann, Christian & Hofmann, Mathias & Tsatsaronis, George, 2020. "Impact of the chlorine value chain on the demand response potential of the chloralkali process," Applied Energy, Elsevier, vol. 276(C).
    19. Leinauer, Christina & Schott, Paul & Fridgen, Gilbert & Keller, Robert & Ollig, Philipp & Weibelzahl, Martin, 2022. "Obstacles to demand response: Why industrial companies do not adapt their power consumption to volatile power generation," Energy Policy, Elsevier, vol. 165(C).
    20. Kim, Jin-Ho & Shcherbakova, Anastasia, 2011. "Common failures of demand response," Energy, Elsevier, vol. 36(2), pages 873-880.
    21. Peter Cramton & Axel Ockenfels & Steven Stoft, 2013. "Capacity Market Fundamentals," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Kittel & Alexander Roth & Wolf-Peter Schill, 2024. "Coping with the Dunkelflaute: Power system implications of variable renewable energy droughts in Europe," Papers 2411.17683, arXiv.org, revised Jan 2025.
    2. Bublitz, Andreas & Keles, Dogan & Zimmermann, Florian & Fraunholz, Christoph & Fichtner, Wolf, 2019. "A survey on electricity market design: Insights from theory and real-world implementations of capacity remuneration mechanisms," Energy Economics, Elsevier, vol. 80(C), pages 1059-1078.
    3. Lebeau, Alexis & Petitet, Marie & Quemin, Simon & Saguan, Marcelo, 2024. "Long-term issues with the Energy-Only Market design in the context of deep decarbonization," Energy Economics, Elsevier, vol. 132(C).
    4. Bublitz, Andreas & Keles, Dogan & Zimmermann, Florian & Fraunholz, Christoph & Fichtner, Wolf, 2018. "A survey on electricity market design: Insights from theory and real-world implementations of capacity remuneration mechanisms," Working Paper Series in Production and Energy 27, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    5. Keppler, Jan Horst & Quemin, Simon & Saguan, Marcelo, 2022. "Why the sustainable provision of low-carbon electricity needs hybrid markets," Energy Policy, Elsevier, vol. 171(C).
    6. Tangerås, Thomas P., 2018. "Equilibrium supply security in a multinational electricity market with renewable production," Energy Economics, Elsevier, vol. 72(C), pages 416-435.
    7. Mier, Mathias, 2021. "Efficient pricing of electricity revisited," Energy Economics, Elsevier, vol. 104(C).
    8. Fabra, Natalia, 2018. "A primer on capacity mechanisms," Energy Economics, Elsevier, vol. 75(C), pages 323-335.
    9. Holmberg, P. & Tangerås, T., 2021. "Strategic Reserves versus Market-wide Capacity Mechanisms," Cambridge Working Papers in Economics 2132, Faculty of Economics, University of Cambridge.
    10. Shu, Han & Mays, Jacob, 2023. "Beyond capacity: Contractual form in electricity reliability obligations," Energy Economics, Elsevier, vol. 126(C).
    11. Bonaldo, Cinzia & Fontini, Fulvio & Moretto, Michele, 2024. "The energy transition and the value of Capacity Remuneration Mechanisms," Energy Economics, Elsevier, vol. 139(C).
    12. Neuhoff, Karsten & Richstein, Jörn C. & Kröger, Mats, 2023. "Reacting to changing paradigms: How and why to reform electricity markets," Energy Policy, Elsevier, vol. 180(C).
    13. Kozlova, Mariia & Huhta, Kaisa & Lohrmann, Alena, 2023. "The interface between support schemes for renewable energy and security of supply: Reviewing capacity mechanisms and support schemes for renewable energy in Europe," Energy Policy, Elsevier, vol. 181(C).
    14. Kirchem, Dana & Schill, Wolf-Peter, 2023. "Power sector effects of green hydrogen production in Germany," Energy Policy, Elsevier, vol. 182(C).
    15. Chi Kong Chyong & Michael Pollitt & Reuben Cruise, 2019. "Can wholesale electricity prices support "subsidy-free" generation investment in Europe?," Working Papers EPRG1919, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    16. Sebastian Schäfer & Lisa Altvater, 2019. "On the functioning of a capacity market with an increasing share of renewable energy," Journal of Regulatory Economics, Springer, vol. 56(1), pages 59-84, August.
    17. Lukas Block & Bastian Westbrock, 2022. "Capacity investments in a competitive energy market," Working Papers Dissertations 95, Paderborn University, Faculty of Business Administration and Economics.
    18. Lambin, Xavier, 2020. "Integration of Demand Response in Electricity Market Capacity Mechanisms," Utilities Policy, Elsevier, vol. 64(C).
    19. Simshauser, Paul, 2024. "On static vs. dynamic line ratings in renewable energy zones," Energy Economics, Elsevier, vol. 129(C).
    20. Csereklyei, Zsuzsanna & Kallies, Anne, 2024. "A legal-economic framework of wholesale electricity markets: Assessing Australia's transition," Energy Policy, Elsevier, vol. 195(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.14664. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.