IDEAS home Printed from https://ideas.repec.org/p/enp/wpaper/eprg2109.html
   My bibliography  Save this paper

Strategic Reserves versus Market-wide Capacity Mechanisms

Author

Listed:
  • Pär Holmberg

    (Research Institute of Industrial Economics (IFN), Stockholm)

  • Thomas Tangerås

    (Research Institute of Industrial Economics (IFN), Stockholm)

Abstract

Many electricity markets use capacity mechanisms to support generation owners. Capacity payments can mitigate imperfections associated with "missing money" in the spot market and solve transitory capacity shortages caused by investment cycles, regulatory changes, or technology shifts. We discuss capacity mechanisms used in different electricity markets around the world. We argue that strategic reserves, if correctly designed, are likely to be more efficient than market-wide capacity mechanisms. This is especially so in electricity markets that rely on substantial amounts of intermittent generation, hydro power, and energy storage whose available capacity varies with circumstances and is difficult to estimate.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Pär Holmberg & Thomas Tangerås, 2021. "Strategic Reserves versus Market-wide Capacity Mechanisms," Working Papers EPRG2109, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
  • Handle: RePEc:enp:wpaper:eprg2109
    as

    Download full text from publisher

    File URL: https://www.eprg.group.cam.ac.uk/eprg-working-paper-2109/
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Natalia Fabra & Nils‐Henrik Fehr & David Harbord, 2006. "Designing electricity auctions," RAND Journal of Economics, RAND Corporation, vol. 37(1), pages 23-46, March.
    2. Paul Joskow & Jean Tirole, 2007. "Reliability and competitive electricity markets," RAND Journal of Economics, RAND Corporation, vol. 38(1), pages 60-84, March.
    3. repec:rje:randje:v:37:y:2006:1:p:23-46 is not listed on IDEAS
    4. Neuhoff, Karsten & Diekmann, Jochen & Kunz, Friedrich & Rüster, Sophia & Schill, Wolf-Peter & Schwenen, Sebastian, 2016. "A coordinated strategic reserve to safeguard the European energy transition," Utilities Policy, Elsevier, vol. 41(C), pages 252-263.
    5. Cramton, Peter & Stoft, Steven, 2008. "Forward reliability markets: Less risk, less market power, more efficiency," Utilities Policy, Elsevier, vol. 16(3), pages 194-201, September.
    6. Holmberg, Pär & Newbery, David, 2010. "The supply function equilibrium and its policy implications for wholesale electricity auctions," Utilities Policy, Elsevier, vol. 18(4), pages 209-226, December.
    7. Kathleen Spees & Samuel A. Newell & Johannes P. Pfeifenberger, 2013. "Capacity Markets - Lessons Learned from the First Decade," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    8. Edward J. Anderson & Pär Holmberg & Andrew B. Philpott, 2013. "Mixed strategies in discriminatory divisible-good auctions," RAND Journal of Economics, RAND Corporation, vol. 44(1), pages 1-32, March.
    9. Hung-po Chao, 1983. "Peak Load Pricing and Capacity Planning with Demand and Supply Uncertainty," Bell Journal of Economics, The RAND Corporation, vol. 14(1), pages 179-190, Spring.
    10. Gerard Llobet and Jorge Padilla, 2018. "Conventional Power Plants in Liberalized Electricity Markets with Renewable Entry," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    11. Mark Armstrong & Simon Cowan & John Vickers, 1994. "Regulatory Reform: Economic Analysis and British Experience," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262510790, December.
    12. Juha Teirilä and Robert A. Ritz, 2019. "Strategic Behaviour in a Capacity Market? The New Irish Electricity Market Design," The Energy Journal, International Association for Energy Economics, vol. 0(The New E).
    13. von der Fehr, Nils-Henrik Morch & Harbord, David, 1993. "Spot Market Competition in the UK Electricity Industry," Economic Journal, Royal Economic Society, vol. 103(418), pages 531-546, May.
    14. K. Ruddell & A. B. Philpott & A. Downward, 2017. "Supply Function Equilibrium with Taxed Benefits," Operations Research, INFORMS, vol. 65(1), pages 1-18, February.
    15. Pycia, Marek & Woodward, Kyle, 2021. "Auctions of Homogeneous Goods: A Case for Pay-as-Bid," CEPR Discussion Papers 15656, C.E.P.R. Discussion Papers.
    16. Harbord, David & Pagnozzi, Marco, 2014. "Britain's electricity capacity auctions: lessons from Colombia and New England," MPRA Paper 56224, University Library of Munich, Germany.
    17. Milgrom, Paul R & Weber, Robert J, 1982. "A Theory of Auctions and Competitive Bidding," Econometrica, Econometric Society, vol. 50(5), pages 1089-1122, September.
    18. K. Ruddell & A. B. Philpott & A. Downward, 2017. "Supply Function Equilibrium with Taxed Benefits," Operations Research, INFORMS, vol. 65(1), pages 1-18, February.
    19. Nicolas Astier and Xavier Lambin, 2019. "Ensuring Capacity Adequacy in Liberalised Electricity Markets," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    20. Sebastian Schwenen, 2015. "Strategic bidding in multi-unit auctions with capacity constrained bidders: the New York capacity market," RAND Journal of Economics, RAND Corporation, vol. 46(4), pages 730-750, October.
    21. Bublitz, Andreas & Keles, Dogan & Zimmermann, Florian & Fraunholz, Christoph & Fichtner, Wolf, 2019. "A survey on electricity market design: Insights from theory and real-world implementations of capacity remuneration mechanisms," Energy Economics, Elsevier, vol. 80(C), pages 1059-1078.
    22. Lambin, Xavier, 2020. "Integration of Demand Response in Electricity Market Capacity Mechanisms," Utilities Policy, Elsevier, vol. 64(C).
    23. Arango, Santiago & Larsen, Erik, 2011. "Cycles in deregulated electricity markets: Empirical evidence from two decades," Energy Policy, Elsevier, vol. 39(5), pages 2457-2466, May.
    24. David Newbery, 2020. "Club goods and a tragedy of the commons: the Clean Energy Package and wind curtailment," Working Papers EPRG2036, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    25. Michael A. Crew & Paul R. Kleindorfer, 1976. "Peak Load Pricing with a Diverse Technology," Bell Journal of Economics, The RAND Corporation, vol. 7(1), pages 207-231, Spring.
    26. Peter Cramton & Axel Ockenfels & Steven Stoft, 2013. "Capacity Market Fundamentals," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    27. Peter Cramton & Steven Stoft, 2007. "Colombia Firm Energy Market," Papers of Peter Cramton 07cfem, University of Maryland, Department of Economics - Peter Cramton, revised 2007.
    28. Pär Holmberg & Frank A. Wolak, 2018. "Comparing auction designs where suppliers have uncertain costs and uncertain pivotal status," RAND Journal of Economics, RAND Corporation, vol. 49(4), pages 995-1027, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Holmberg, Pär & Tangerås, Thomas, 2021. "Sweden's Energy Investment Challenge," Working Paper Series 1383, Research Institute of Industrial Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bublitz, Andreas & Keles, Dogan & Zimmermann, Florian & Fraunholz, Christoph & Fichtner, Wolf, 2019. "A survey on electricity market design: Insights from theory and real-world implementations of capacity remuneration mechanisms," Energy Economics, Elsevier, vol. 80(C), pages 1059-1078.
    2. Fabra, Natalia, 2018. "A primer on capacity mechanisms," Energy Economics, Elsevier, vol. 75(C), pages 323-335.
    3. Bublitz, Andreas & Keles, Dogan & Zimmermann, Florian & Fraunholz, Christoph & Fichtner, Wolf, 2018. "A survey on electricity market design: Insights from theory and real-world implementations of capacity remuneration mechanisms," Working Paper Series in Production and Energy 27, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    4. Simshauser, P. & Gilmore, J., 2020. "Is the NEM broken? Policy discontinuity and the 2017-2020 investment megacycle," Cambridge Working Papers in Economics 2048, Faculty of Economics, University of Cambridge.
    5. Simshauser, Paul, 2020. "Merchant renewables and the valuation of peaking plant in energy-only markets," Energy Economics, Elsevier, vol. 91(C).
    6. Simshauser, P., 2021. "Rooftop Solar PV and the Peak Load Problem in the NEM’s Queensland Region," Cambridge Working Papers in Economics 2180, Faculty of Economics, University of Cambridge.
    7. Mathias Mier, 2020. "Efficient Pricing of Electricity Revisited," ifo Working Paper Series 342, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    8. Simshauser, P., 2020. "Merchant utilities and boundaries of the firm: vertical integration in energy-only markets," Cambridge Working Papers in Economics 2039, Faculty of Economics, University of Cambridge.
    9. Bajo-Buenestado, Raúl, 2017. "Welfare implications of capacity payments in a price-capped electricity sector: A case study of the Texas market (ERCOT)," Energy Economics, Elsevier, vol. 64(C), pages 272-285.
    10. Brown, David P., 2018. "Capacity payment mechanisms and investment incentives in restructured electricity markets," Energy Economics, Elsevier, vol. 74(C), pages 131-142.
    11. Klaus Eisenack & Mathias Mier, 2019. "Peak-load pricing with different types of dispatchability," Journal of Regulatory Economics, Springer, vol. 56(2), pages 105-124, December.
    12. Anderson, Edward & Holmberg, Pär, 2018. "Price instability in multi-unit auctions," Journal of Economic Theory, Elsevier, vol. 175(C), pages 318-341.
    13. Traber, Thure, 2017. "Capacity Remuneration Mechanisms for Reliability in the Integrated European Electricity Market: Effects on Welfare and Distribution through 2023," Utilities Policy, Elsevier, vol. 46(C), pages 1-14.
    14. Holmberg, Pär & Tangerås, Thomas & Ahlqvist, Victor, 2018. "Central- versus Self-Dispatch in Electricity Markets," Working Paper Series 1257, Research Institute of Industrial Economics, revised 27 Mar 2019.
    15. Liu, Shuangquan & Yang, Qiang & Cai, Huaxiang & Yan, Minghui & Zhang, Maolin & Wu, Dianning & Xie, Mengfei, 2019. "Market reform of Yunnan electricity in southwestern China: Practice, challenges and implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    16. Olsina, Fernando & Pringles, Rolando & Larisson, Carlos & Garcés, Francisco, 2014. "Reliability payments to generation capacity in electricity markets," Energy Policy, Elsevier, vol. 73(C), pages 211-224.
    17. Bhagwat, Pradyumna C. & Richstein, Jörn C. & Chappin, Emile J.L. & Iychettira, Kaveri K. & De Vries, Laurens J., 2017. "Cross-border effects of capacity mechanisms in interconnected power systems," Utilities Policy, Elsevier, vol. 46(C), pages 33-47.
    18. Chloé Coq & Henrik Orzen & Sebastian Schwenen, 2017. "Pricing and capacity provision in electricity markets: an experimental study," Journal of Regulatory Economics, Springer, vol. 51(2), pages 123-158, April.
    19. David Newbery and Michael Grubb, 2015. "Security of Supply, the Role of Interconnectors and Option Values : insights from the GB Capacity Auction," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    20. Mathias Mier, 2018. "Policy Implications of a World with Renewables, Limited Dispatchability, and Fixed Load," Working Papers V-412-18, University of Oldenburg, Department of Economics, revised Jul 2018.

    More about this item

    Keywords

    Capacity mechanism; market design; reliability; resource efficiency;
    All these keywords.

    JEL classification:

    • D25 - Microeconomics - - Production and Organizations - - - Intertemporal Firm Choice: Investment, Capacity, and Financing
    • D47 - Microeconomics - - Market Structure, Pricing, and Design - - - Market Design
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:enp:wpaper:eprg2109. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/jicamuk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ruth Newman (email available below). General contact details of provider: https://edirc.repec.org/data/jicamuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.