Author
Listed:
- Ege Erdil
- Andrei Potlogea
- Tamay Besiroglu
- Edu Roldan
- Anson Ho
- Jaime Sevilla
- Matthew Barnett
- Matej Vrzla
- Robert Sandler
Abstract
Assessing the economic impacts of artificial intelligence requires integrating insights from both computer science and economics. We present the Growth and AI Transition Endogenous model (GATE), a dynamic integrated assessment model that simulates the economic effects of AI automation. GATE combines three key ingredients that have not been brought together in previous work: (1) a compute-based model of AI development, (2) an AI automation framework, and (3) a semi-endogenous growth model featuring endogenous investment and adjustment costs. The model allows users to simulate the economic effects of the transition to advanced AI across a range of potential scenarios. GATE captures the interactions between economic variables, including investment, automation, innovation, and growth, as well as AI-related inputs such as compute and algorithms. This paper explains the model's structure and functionality, emphasizing AI development for economists and economic modeling for the AI community. The model is implemented in an interactive sandbox, enabling users to explore the impact of AI under different parameter choices and policy interventions. The modeling sandbox is available at: www.epoch.ai/GATE.
Suggested Citation
Ege Erdil & Andrei Potlogea & Tamay Besiroglu & Edu Roldan & Anson Ho & Jaime Sevilla & Matthew Barnett & Matej Vrzla & Robert Sandler, 2025.
"GATE: An Integrated Assessment Model for AI Automation,"
Papers
2503.04941, arXiv.org.
Handle:
RePEc:arx:papers:2503.04941
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.04941. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.