IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2102.09209.html
   My bibliography  Save this paper

Deep Structural Estimation: With an Application to Option Pricing

Author

Listed:
  • Hui Chen
  • Antoine Didisheim
  • Simon Scheidegger

Abstract

We propose a novel structural estimation framework in which we train a surrogate of an economic model with deep neural networks. Our methodology alleviates the curse of dimensionality and speeds up the evaluation and parameter estimation by orders of magnitudes, which significantly enhances one's ability to conduct analyses that require frequent parameter re-estimation. As an empirical application, we compare two popular option pricing models (the Heston and the Bates model with double-exponential jumps) against a non-parametric random forest model. We document that: a) the Bates model produces better out-of-sample pricing on average, but both structural models fail to outperform random forest for large areas of the volatility surface; b) random forest is more competitive at short horizons (e.g., 1-day), for short-dated options (with less than 7 days to maturity), and on days with poor liquidity; c) both structural models outperform random forest in out-of-sample delta hedging; d) the Heston model's relative performance has deteriorated significantly after the 2008 financial crisis.

Suggested Citation

  • Hui Chen & Antoine Didisheim & Simon Scheidegger, 2021. "Deep Structural Estimation: With an Application to Option Pricing," Papers 2102.09209, arXiv.org.
  • Handle: RePEc:arx:papers:2102.09209
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2102.09209
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Pan, Jun, 2002. "The jump-risk premia implicit in options: evidence from an integrated time-series study," Journal of Financial Economics, Elsevier, vol. 63(1), pages 3-50, January.
    3. Hutchinson, James M & Lo, Andrew W & Poggio, Tomaso, 1994. "A Nonparametric Approach to Pricing and Hedging Derivative Securities via Learning Networks," Journal of Finance, American Finance Association, vol. 49(3), pages 851-889, July.
    4. Heiss, Florian & Winschel, Viktor, 2008. "Likelihood approximation by numerical integration on sparse grids," Journal of Econometrics, Elsevier, vol. 144(1), pages 62-80, May.
    5. Ohad Kadan & Xiaoxiao Tang, 2020. "A Bound on Expected Stock Returns [Illiquidity and stock returns: Cross-section and time-series effects]," Review of Financial Studies, Society for Financial Studies, vol. 33(4), pages 1565-1617.
    6. Tim Bollerslev & Viktor Todorov, 2011. "Tails, Fears, and Risk Premia," Journal of Finance, American Finance Association, vol. 66(6), pages 2165-2211, December.
    7. Torben G. Andersen & Nicola Fusari & Viktor Todorov, 2015. "Parametric Inference and Dynamic State Recovery From Option Panels," Econometrica, Econometric Society, vol. 83(3), pages 1081-1145, May.
    8. Christoffersen, Peter & Jacobs, Kris, 2004. "The importance of the loss function in option valuation," Journal of Financial Economics, Elsevier, vol. 72(2), pages 291-318, May.
    9. Fernández-Villaverde, Jesús & Hurtado, Samuel & Nuño, Galo, 2019. "Financial Frictions and the Wealth Distribution," CEPR Discussion Papers 14002, C.E.P.R. Discussion Papers.
    10. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    11. Aldrich, Eric M. & Fernández-Villaverde, Jesús & Ronald Gallant, A. & Rubio-Ramírez, Juan F., 2011. "Tapping the supercomputer under your desk: Solving dynamic equilibrium models with graphics processors," Journal of Economic Dynamics and Control, Elsevier, vol. 35(3), pages 386-393, March.
    12. Max H. Farrell & Tengyuan Liang & Sanjog Misra, 2021. "Deep Neural Networks for Estimation and Inference," Econometrica, Econometric Society, vol. 89(1), pages 181-213, January.
    13. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    14. Tetsuya Kaji & Elena Manresa & Guillaume Pouliot, 2020. "An Adversarial Approach to Structural Estimation," Working Papers 2020-144, Becker Friedman Institute for Research In Economics.
    15. Fedor Iskhakov & John Rust & Bertel Schjerning, 0. "Machine learning and structural econometrics: contrasts and synergies," Econometrics Journal, Royal Economic Society, vol. 23(3), pages 81-124.
    16. Ohad Kadan & Xiaoxiao Tang, 2020. "A Bound on Expected Stock Returns," Review of Finance, European Finance Association, vol. 33(4), pages 1565-1617.
    17. Mitsuru Igami, 0. "Artificial intelligence as structural estimation: Deep Blue, Bonanza, and AlphaGo," Econometrics Journal, Royal Economic Society, vol. 23(3), pages 1-24.
    18. Xiaohong Chen & Sydney C. Ludvigson, 2009. "Land of addicts? an empirical investigation of habit‐based asset pricing models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(7), pages 1057-1093, November.
    19. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    20. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    21. Fedor Iskhakov & John Rust & Bertel Schjerning, 2020. "Machine learning and structural econometrics: contrasts and synergies," The Econometrics Journal, Royal Economic Society, vol. 23(3), pages 81-124.
    22. Schaefer, Stephen M. & Strebulaev, Ilya A., 2008. "Structural models of credit risk are useful: Evidence from hedge ratios on corporate bonds," Journal of Financial Economics, Elsevier, vol. 90(1), pages 1-19, October.
    23. Torben G. Andersen & Nicola Fusari & Viktor Todorov, 2017. "Short-Term Market Risks Implied by Weekly Options," Journal of Finance, American Finance Association, vol. 72(3), pages 1335-1386, June.
    24. Judd, Kenneth L., 1996. "Approximation, perturbation, and projection methods in economic analysis," Handbook of Computational Economics, in: H. M. Amman & D. A. Kendrick & J. Rust (ed.), Handbook of Computational Economics, edition 1, volume 1, chapter 12, pages 509-585, Elsevier.
    25. Johannes Brumm & Simon Scheidegger, 2017. "Using Adaptive Sparse Grids to Solve High‐Dimensional Dynamic Models," Econometrica, Econometric Society, vol. 85, pages 1575-1612, September.
    26. Tetsuya Kaji & Elena Manresa & Guillaume Pouliot, 2020. "An adversarial approach to structural estimation," CeMMAP working papers CWP39/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    27. Andriy Norets, 2012. "Estimation of Dynamic Discrete Choice Models Using Artificial Neural Network Approximations," Econometric Reviews, Taylor & Francis Journals, vol. 31(1), pages 84-106.
    28. Mitsuru Igami, 2020. "Artificial intelligence as structural estimation: Deep Blue, Bonanza, and AlphaGo," The Econometrics Journal, Royal Economic Society, vol. 23(3), pages 1-24.
    29. Maliar, Lilia & Maliar, Serguei & Winant, Pablo, 2019. "Will Artificial Intelligence Replace Computational Economists Any Time Soon?," CEPR Discussion Papers 14024, C.E.P.R. Discussion Papers.
    30. Bates, David S., 2000. "Post-'87 crash fears in the S&P 500 futures option market," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 181-238.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hui Chen & Antoine Didisheim & Simon Scheidegger, 2021. "Deep Structural Estimation:With an Application to Option Pricing," Cahiers de Recherches Economiques du Département d'économie 21.14, Université de Lausanne, Faculté des HEC, Département d’économie.
    2. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    3. H. Peter Boswijk & Roger J. A. Laeven & Evgenii Vladimirov, 2022. "Estimating Option Pricing Models Using a Characteristic Function Based Linear State Space Representation," Tinbergen Institute Discussion Papers 22-000/III, Tinbergen Institute.
    4. Neumann, Maximilian & Prokopczuk, Marcel & Wese Simen, Chardin, 2016. "Jump and variance risk premia in the S&P 500," Journal of Banking & Finance, Elsevier, vol. 69(C), pages 72-83.
    5. Du Du & Dan Luo, 2019. "The Pricing of Jump Propagation: Evidence from Spot and Options Markets," Management Science, INFORMS, vol. 67(5), pages 2360-2387, May.
    6. Calvet, Laurent E. & Fearnley, Marcus & Fisher, Adlai J. & Leippold, Markus, 2015. "What is beneath the surface? Option pricing with multifrequency latent states," Journal of Econometrics, Elsevier, vol. 187(2), pages 498-511.
    7. Gonçalo Faria & João Correia-da-Silva, 2014. "A closed-form solution for options with ambiguity about stochastic volatility," Review of Derivatives Research, Springer, vol. 17(2), pages 125-159, July.
    8. Peter Christoffersen & Steven Heston & Kris Jacobs, 2009. "The Shape and Term Structure of the Index Option Smirk: Why Multifactor Stochastic Volatility Models Work So Well," Management Science, INFORMS, vol. 55(12), pages 1914-1932, December.
    9. Gurdip Bakshi & Charles Cao & Zhaodong (Ken) Zhong, 2021. "Assessing models of individual equity option prices," Review of Quantitative Finance and Accounting, Springer, vol. 57(1), pages 1-28, July.
    10. Shackleton, Mark B. & Taylor, Stephen J. & Yu, Peng, 2010. "A multi-horizon comparison of density forecasts for the S&P 500 using index returns and option prices," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2678-2693, November.
    11. Jarrow, Robert & Kwok, Simon Sai Man, 2015. "Specification tests of calibrated option pricing models," Journal of Econometrics, Elsevier, vol. 189(2), pages 397-414.
    12. A. S. Hurn & K. A. Lindsay & A. J. McClelland, 2015. "Estimating the Parameters of Stochastic Volatility Models Using Option Price Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 579-594, October.
    13. H. Peter Boswijk & Roger J. A. Laeven & Evgenii Vladimirov, 2022. "Estimating Option Pricing Models Using a Characteristic Function-Based Linear State Space Representation," Papers 2210.06217, arXiv.org.
    14. Doran, James S. & Ronn, Ehud I., 2008. "Computing the market price of volatility risk in the energy commodity markets," Journal of Banking & Finance, Elsevier, vol. 32(12), pages 2541-2552, December.
    15. Liu, Xiaoquan & Cao, Yi & Ma, Chenghu & Shen, Liya, 2019. "Wavelet-based option pricing: An empirical study," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1132-1142.
    16. René Garcia & Eric Ghysels & Eric Renault, 2004. "The Econometrics of Option Pricing," CIRANO Working Papers 2004s-04, CIRANO.
    17. Sang Byung Seo & Jessica A. Wachter, 2019. "Option Prices in a Model with Stochastic Disaster Risk," Management Science, INFORMS, vol. 65(8), pages 3449-3469, August.
    18. Aït-Sahalia, Yacine & Li, Chenxu & Li, Chen Xu, 2021. "Closed-form implied volatility surfaces for stochastic volatility models with jumps," Journal of Econometrics, Elsevier, vol. 222(1), pages 364-392.
    19. Dario Alitab & Giacomo Bormetti & Fulvio Corsi & Adam A. Majewski, 2019. "A realized volatility approach to option pricing with continuous and jump variance components," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 639-664, December.
    20. Bardgett, Chris & Gourier, Elise & Leippold, Markus, 2019. "Inferring volatility dynamics and risk premia from the S&P 500 and VIX markets," Journal of Financial Economics, Elsevier, vol. 131(3), pages 593-618.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2102.09209. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.