IDEAS home Printed from https://ideas.repec.org/a/oup/emjrnl/v23y2020i3ps1-s24..html
   My bibliography  Save this article

Artificial intelligence as structural estimation: Deep Blue, Bonanza, and AlphaGo

Author

Listed:
  • Mitsuru Igami

Abstract

SummaryThis article clarifies the connections between certain algorithms to develop artificial intelligence (AI) and the econometrics of dynamic structural models, with concrete examples of three 'game AIs'. Chess-playing Deep Blue is a calibrated value function, whereas shogi-playing Bonanza is an estimated value function via Rust’s nested fixed-point (NFXP) method. AlphaGo’s 'supervised-learning policy network' is a deep-neural-network implementation of the conditional-choice-probability (CCP) estimation reminiscent of Hotz and Miller's first step; the construction of its 'reinforcement-learning value network' is analogous to their conditional choice simulation (CCS). I then explain the similarities and differences between AI-related methods and structural estimation more generally, and suggest areas of potential cross-fertilization.

Suggested Citation

  • Mitsuru Igami, 2020. "Artificial intelligence as structural estimation: Deep Blue, Bonanza, and AlphaGo," The Econometrics Journal, Royal Economic Society, vol. 23(3), pages 1-24.
  • Handle: RePEc:oup:emjrnl:v:23:y:2020:i:3:p:s1-s24.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/ectj/utaa005
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hui Chen & Antoine Didisheim & Simon Scheidegger, 2021. "Deep Structural Estimation:With an Application to Option Pricing," Cahiers de Recherches Economiques du Département d'économie 21.14, Université de Lausanne, Faculté des HEC, Département d’économie.
    2. Minkyu Shin & Jin Kim & Minkyung Kim, 2020. "Measuring Human Adaptation to AI in Decision Making: Application to Evaluate Changes after AlphaGo," Papers 2012.15035, arXiv.org, revised Jan 2021.
    3. Philip Marx & Elie Tamer & Xun Tang, 2022. "Parallel Trends and Dynamic Choices," Papers 2207.06564, arXiv.org.
    4. Hui Chen & Antoine Didisheim & Simon Scheidegger, 2021. "Deep Structural Estimation: With an Application to Option Pricing," Papers 2102.09209, arXiv.org.
    5. Pablo S. Castro & Ajit Desai & Han Du & Rodney Garratt & Francisco Rivadeneyra, 2021. "Estimating Policy Functions in Payments Systems Using Reinforcement Learning," Staff Working Papers 21-7, Bank of Canada.
    6. Max H. Farrell & Tengyuan Liang & Sanjog Misra, 2020. "Deep Learning for Individual Heterogeneity: An Automatic Inference Framework," Papers 2010.14694, arXiv.org, revised Jul 2021.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:emjrnl:v:23:y:2020:i:3:p:s1-s24.. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/resssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/resssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.