IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2001.02783.html
   My bibliography  Save this paper

If the Prospect of Some Occupations Are Stagnating With Technological Advancement? A Task Attribute Approach to Detect Employment Vulnerability

Author

Listed:
  • Iftekhairul Islam

    (The University of Texas at Dallas)

  • Fahad Shaon

    (The University of Texas at Dallas)

Abstract

Two distinct trends can prove the existence of technological unemployment in the US. First, there are more open jobs than the number of unemployed persons looking for a job, and second, the shift of the Beveridge curve. There have been many attempts to find the cause of technological unemployment. However, all of these approaches fail when it comes to evaluating the impact of modern technologies on employment future. This study hypothesizes that rather than looking into skill requirement or routine non-routine discrimination of tasks, a holistic approach is required to predict which occupations are going to be vulnerable with the advent of this 4th industrial revolution, i.e., widespread application of AI, ML algorithms, and Robotics. Three critical attributes are considered: bottleneck, hazardous, and routine. Forty-five relevant attributes are chosen from the O*NET database that can define these three types of tasks. Performing Principal Axis Factor Analysis, and K-medoid clustering, the study discovers a list of 367 vulnerable occupations. The study further analyzes the last nine years of national employment data and finds that over the previous four years, the growth of vulnerable occupations is only half than that of non-vulnerable ones despite the long rally of economic expansion.

Suggested Citation

  • Iftekhairul Islam & Fahad Shaon, 2020. "If the Prospect of Some Occupations Are Stagnating With Technological Advancement? A Task Attribute Approach to Detect Employment Vulnerability," Papers 2001.02783, arXiv.org.
  • Handle: RePEc:arx:papers:2001.02783
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2001.02783
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Berger, Thor & Chen, Chinchih & Frey, Carl Benedikt, 2018. "Drivers of disruption? Estimating the Uber effect," European Economic Review, Elsevier, vol. 110(C), pages 197-210.
    2. Manacorda, Marco & Manning, Alan & Wadsworth, Jonathan, 2006. "The impact of immigration on the structure of male wages: theory and evidence from Britain," LSE Research Online Documents on Economics 19797, London School of Economics and Political Science, LSE Library.
    3. Richard Dickens & Stephen Machin & Alan Manning, 1994. "The Effects of Minimum Wages on Employment: Theory and Evidence from the US," NBER Working Papers 4742, National Bureau of Economic Research, Inc.
    4. Autor, David H., 2013. "The "task approach" to labor markets : an overview," Journal for Labour Market Research, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 46(3), pages 185-199.
    5. Paul Davidson, 2013. "Income inequality and hollowing out the middle class," Journal of Post Keynesian Economics, Taylor & Francis Journals, vol. 36(2), pages 381-384.
    6. Seth G. Benzell & Laurence J. Kotlikoff & Guillermo LaGarda & Jeffrey D. Sachs, 2015. "Robots Are Us: Some Economics of Human Replacement," NBER Working Papers 20941, National Bureau of Economic Research, Inc.
    7. Maarten Goos & Joep Konings & Marieke Vandeweyer, 2015. "Employment Growth in Europe: The Roles of Innovation, Local Job Multipliers and Institutions," Working Papers of Department of Economics, Leuven 547246, KU Leuven, Faculty of Economics and Business (FEB), Department of Economics, Leuven.
    8. Horst Feldmann, 2013. "Technological unemployment in industrial countries," Journal of Evolutionary Economics, Springer, vol. 23(5), pages 1099-1126, November.
    9. Claudia Goldin & Lawrence F. Katz, 2007. "The Race between Education and Technology: The Evolution of U.S. Educational Wage Differentials, 1890 to 2005," NBER Working Papers 12984, National Bureau of Economic Research, Inc.
    10. Stephen Machin & John Van Reenen, 1998. "Technology and Changes in Skill Structure: Evidence from Seven OECD Countries," The Quarterly Journal of Economics, Oxford University Press, vol. 113(4), pages 1215-1244.
    11. David H. Autor & Frank Levy & Richard J. Murnane, 2003. "The skill content of recent technological change: an empirical exploration," Proceedings, Federal Reserve Bank of San Francisco, issue Nov.
    12. Oded Galor & Omer Moav, 2000. "Ability-Biased Technological Transition, Wage Inequality, and Economic Growth," The Quarterly Journal of Economics, Oxford University Press, vol. 115(2), pages 469-497.
    13. Maarten Goos & Alan Manning, 2007. "Lousy and Lovely Jobs: The Rising Polarization of Work in Britain," The Review of Economics and Statistics, MIT Press, vol. 89(1), pages 118-133, February.
    14. Daron Acemoglu & Pascual Restrepo, 2016. "The Race Between Machine and Man: Implications of Technology for Growth, Factor Shares and Employment," NBER Working Papers 22252, National Bureau of Economic Research, Inc.
    15. Frey, Carl Benedikt & Osborne, Michael A., 2017. "The future of employment: How susceptible are jobs to computerisation?," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 254-280.
    16. Acemoglu, Daron, 1995. "Reward structures and the allocation of talent," European Economic Review, Elsevier, vol. 39(1), pages 17-33, January.
    17. Cortes, Guido Matias & Jaimovich, Nir & Siu, Henry E., 2017. "Disappearing routine jobs: Who, how, and why?," Journal of Monetary Economics, Elsevier, vol. 91(C), pages 69-87.
    18. Seth G. Benzell & Laurence J. Kotlikoff & Guillermo LaGarda & Jeffrey D. Sachs, 2015. "Robots Are Us: Some Economics of Human Replacement," NBER Working Papers 20941, National Bureau of Economic Research, Inc.
    19. Acemoglu, Daron & Autor, David, 2011. "Skills, Tasks and Technologies: Implications for Employment and Earnings," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 4, chapter 12, pages 1043-1171, Elsevier.
    20. Dickens, Richard & Machin, Stephen & Manning, Alan, 1999. "The Effects of Minimum Wages on Employment: Theory and Evidence from Britain," Journal of Labor Economics, University of Chicago Press, vol. 17(1), pages 1-22, January.
    21. Benjamin David, 2017. "Computer technology and probable job destructions in Japan: An evaluation," Post-Print hal-01549790, HAL.
    22. Benjamin David, 2015. "Computer technology and probable job destructions in Japan: an evaluation," EconomiX Working Papers 2015-28, University of Paris Nanterre, EconomiX.
    23. Kristina Matuzeviciute & Mindaugas Butkus & Akvile Karaliute, 2017. "Do Technological Innovations Affect Unemployment? Some Empirical Evidence from European Countries," Economies, MDPI, vol. 5(4), pages 1-19, December.
    24. David, Benjamin, 2017. "Computer technology and probable job destructions in Japan: An evaluation," Journal of the Japanese and International Economies, Elsevier, vol. 43(C), pages 77-87.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gregory, Terry & Salomons, Anna & Zierahn, Ulrich, 2016. "Racing With or Against the Machine? Evidence from Europe," VfS Annual Conference 2016 (Augsburg): Demographic Change 145843, Verein für Socialpolitik / German Economic Association.
    2. Arntz, Melanie & Gregory, Terry & Zierahn, Ulrich, 2016. "ELS issues in robotics and steps to consider them. Part 1: Robotics and employment. Consequences of robotics and technological change for the structure and level of employment," ZEW Expertises, ZEW - Leibniz Centre for European Economic Research, number 146501.
    3. Maarten Goos & Melanie Arntz & Ulrich Zierahn & Terry Gregory & Stephanie Carretero Gomez & Ignacio Gonzalez Vazquez & Koen Jonkers, 2019. "The Impact of Technological Innovation on the Future of Work," JRC Working Papers on Labour, Education and Technology 2019-03, Joint Research Centre (Seville site).
    4. Caselli, Mauro & Fracasso, Andrea & Scicchitano, Sergio & Traverso, Silvio & Tundis, Enrico, 2021. "Stop worrying and love the robot: An activity-based approach to assess the impact of robotization on employment dynamics," GLO Discussion Paper Series 802, Global Labor Organization (GLO).
    5. David Hémous & Morten Olsen, 2022. "The Rise of the Machines: Automation, Horizontal Innovation, and Income Inequality," American Economic Journal: Macroeconomics, American Economic Association, vol. 14(1), pages 179-223, January.
    6. Kaltenberg, Mary & Foster-McGregor, Neil, 2020. "The impact of automation on inequality across Europe," MERIT Working Papers 2020-009, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    7. Georg Graetz & Guy Michaels, 2018. "Robots at Work," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 753-768, December.
    8. Fierro, Luca Eduardo & Caiani, Alessandro & Russo, Alberto, 2022. "Automation, Job Polarisation, and Structural Change," Journal of Economic Behavior & Organization, Elsevier, vol. 200(C), pages 499-535.
    9. Michael Coelli & Jeff Borland, 2019. "Behind the headline number: Why not to rely on Frey and Osborne’s predictions of potential job loss from automation," Melbourne Institute Working Paper Series wp2019n10, Melbourne Institute of Applied Economic and Social Research, The University of Melbourne.
    10. Cirillo, Valeria & Evangelista, Rinaldo & Guarascio, Dario & Sostero, Matteo, 2021. "Digitalization, routineness and employment: An exploration on Italian task-based data," Research Policy, Elsevier, vol. 50(7).
    11. Cao, Yuqiang & Hu, Yong & Liu, Qian & Lu, Meiting & Shan, Yaowen, 2023. "Job creation or disruption? Unraveling the effects of smart city construction on corporate employment in China," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    12. Thor Berger & Carl Benedikt Frey, 2016. "Structural Transformation in the OECD: Digitalisation, Deindustrialisation and the Future of Work," OECD Social, Employment and Migration Working Papers 193, OECD Publishing.
    13. Loebbing, Jonas, 2018. "An Elementary Theory of Endogenous Technical Change and Wage Inequality," VfS Annual Conference 2018 (Freiburg, Breisgau): Digital Economy 181603, Verein für Socialpolitik / German Economic Association.
    14. Gries, Thomas & Naudé, Wim, 2020. "Artificial Intelligence, Income Distribution and Economic Growth," IZA Discussion Papers 13606, Institute of Labor Economics (IZA).
    15. Thomsen, Stephan L, 2018. "Die Rolle der Computerisierung und Digitalisierung für Beschäftigung und Einkommen," Hannover Economic Papers (HEP) dp-645, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    16. Hensvik, Lena & Skans, Oskar Nordström, 2023. "The skill-specific impact of past and projected occupational decline," Labour Economics, Elsevier, vol. 81(C).
    17. Jeffrey D. Sachs & Seth G. Benzell & Guillermo LaGarda, 2015. "Robots: Curse or Blessing? A Basic Framework," NBER Working Papers 21091, National Bureau of Economic Research, Inc.
    18. Consoli, Davide & Marin, Giovanni & Rentocchini, Francesco & Vona, Francesco, 2023. "Routinization, within-occupation task changes and long-run employment dynamics," Research Policy, Elsevier, vol. 52(1).
    19. Chee‐Hong Law & Siong Hook Law, 2024. "The non‐linear impacts of innovation on unemployment: Evidence from panel data," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(1), pages 402-424, January.
    20. Naude, Wim, 2019. "The race against the robots and the fallacy of the giant cheesecake: Immediate and imagined impacts of artificial intelligence," MERIT Working Papers 2019-005, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2001.02783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.