IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Liquidity commonality does not imply liquidity resilience commonality: A functional characterisation for ultra-high frequency cross-sectional LOB data

  • Efstathios Panayi
  • Gareth Peters
  • Ioannis Kosmidis
Registered author(s):

    We present a large-scale study of commonality in liquidity and resilience across assets in an ultra high-frequency (millisecond-timestamped) Limit Order Book (LOB) dataset from a pan-European electronic equity trading facility. We first show that extant work in quantifying liquidity commonality through the degree of explanatory power of the dominant modes of variation of liquidity (extracted through Principal Component Analysis) fails to account for heavy tailed features in the data, thus producing potentially misleading results. We employ Independent Component Analysis, which both decorrelates the liquidity measures in the asset cross-section, but also reduces higher-order statistical dependencies. To measure commonality in liquidity resilience, we utilise a novel characterisation as the time required for return to a threshold liquidity level. This reflects a dimension of liquidity that is not captured by the majority of liquidity measures and has important ramifications for understanding supply and demand pressures for market makers in electronic exchanges, as well as regulators and HFTs. When the metric is mapped out across a range of thresholds, it produces the daily Liquidity Resilience Profile (LRP) for a given asset. This daily summary of liquidity resilience behaviour from the vast LOB dataset is then amenable to a functional data representation. This enables the comparison of liquidity resilience in the asset cross-section via functional linear sub-space decompositions and functional regression. The functional regression results presented here suggest that market factors for liquidity resilience (as extracted through functional principal components analysis) can explain between 10 and 40% of the variation in liquidity resilience at low liquidity thresholds, but are less explanatory at more extreme levels, where individual asset factors take effect.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://arxiv.org/pdf/1406.5486
    File Function: Latest version
    Download Restriction: no

    Paper provided by arXiv.org in its series Papers with number 1406.5486.

    as
    in new window

    Length:
    Date of creation: Jun 2014
    Date of revision:
    Handle: RePEc:arx:papers:1406.5486
    Contact details of provider: Web page: http://arxiv.org/

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Pastor, Lubos & Stambaugh, Robert F., 2003. "Liquidity Risk and Expected Stock Returns," Journal of Political Economy, University of Chicago Press, vol. 111(3), pages 642-685, June.
    2. Loriano Mancini & Angelo Ranaldo & Jan Wrampelmeyer, 2013. "Liquidity in the Foreign Exchange Market: Measurement, Commonality, and Risk Premiums," Journal of Finance, American Finance Association, vol. 68(5), pages 1805-1841, October.
    3. Roll, Richard, 1984. " A Simple Implicit Measure of the Effective Bid-Ask Spread in an Efficient Market," Journal of Finance, American Finance Association, vol. 39(4), pages 1127-39, September.
    4. Brennan, Michael J. & Subrahmanyam, Avanidhar, 1996. "Market microstructure and asset pricing: On the compensation for illiquidity in stock returns," Journal of Financial Economics, Elsevier, vol. 41(3), pages 441-464, July.
    5. Thierry Foucault & Ohad Kadan & Eugene Kandel, 2003. "Limit Order Book as a Market for Liquidity," Discussion Paper Series dp321, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    6. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-35, November.
    7. Marshall, Ben R. & Nguyen, Nhut H. & Visaltanachoti, Nuttawat, 2013. "Liquidity commonality in commodities," Journal of Banking & Finance, Elsevier, vol. 37(1), pages 11-20.
    8. Karnaukh, Nina & Ranaldo, Angelo & Söderlind, Paul, 2013. "Understanding FX Liquidity," Working Papers on Finance 1315, University of St. Gallen, School of Finance, revised Apr 2015.
    9. Korajczyk, Robert A. & Sadka, Ronnie, 2008. "Pricing the commonality across alternative measures of liquidity," Journal of Financial Economics, Elsevier, vol. 87(1), pages 45-72, January.
    10. Craig W. Holden & Stacey Jacobsen & Avanidhar Subrahmanyam, 2014. "The Empirical Analysis of Liquidity," Foundations and Trends(R) in Finance, now publishers, vol. 8(4), pages 263-365, December.
    11. Domowitz, Ian & Hansch, Oliver & Wang, Xiaoxin, 2005. "Liquidity commonality and return co-movement," Journal of Financial Markets, Elsevier, vol. 8(4), pages 351-376, November.
    12. Kylie-Anne Richards & Gareth W. Peters & William Dunsmuir, 2012. "Heavy-Tailed Features and Empirical Analysis of the Limit Order Book Volume Profiles in Futures Markets," Papers 1210.7215, arXiv.org, revised Apr 2015.
    13. Chordia, Tarun & Roll, Richard & Subrahmanyam, Avanidhar, 2000. "Commonality in liquidity," Journal of Financial Economics, Elsevier, vol. 56(1), pages 3-28, April.
    14. Alex Frino & Vito Mollica & Zeyang Zhou, 2014. "Commonality in Liquidity Across International Borders: Evidence from Futures Markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(8), pages 807-818, 08.
    15. Chen, Tao & Martin, Elaine & Montague, Gary, 2009. "Robust probabilistic PCA with missing data and contribution analysis for outlier detection," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3706-3716, August.
    16. Riordan, Ryan & Storkenmaier, Andreas & Wagener, Martin & Sarah Zhang, S., 2013. "Public information arrival: Price discovery and liquidity in electronic limit order markets," Journal of Banking & Finance, Elsevier, vol. 37(4), pages 1148-1159.
    17. Amihud, Yakov, 2002. "Illiquidity and stock returns: cross-section and time-series effects," Journal of Financial Markets, Elsevier, vol. 5(1), pages 31-56, January.
    18. Sklavos, Konstantinos & Dam, Lammertjan & Scholtens, Bert, 2013. "The liquidity of energy stocks," Energy Economics, Elsevier, vol. 38(C), pages 168-175.
    19. Amihud, Yakov & Mendelson, Haim, 1986. "Asset pricing and the bid-ask spread," Journal of Financial Economics, Elsevier, vol. 17(2), pages 223-249, December.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:1406.5486. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.