IDEAS home Printed from
   My bibliography  Save this paper

Liquidity commonality does not imply liquidity resilience commonality: A functional characterisation for ultra-high frequency cross-sectional LOB data


  • Efstathios Panayi
  • Gareth Peters
  • Ioannis Kosmidis


We present a large-scale study of commonality in liquidity and resilience across assets in an ultra high-frequency (millisecond-timestamped) Limit Order Book (LOB) dataset from a pan-European electronic equity trading facility. We first show that extant work in quantifying liquidity commonality through the degree of explanatory power of the dominant modes of variation of liquidity (extracted through Principal Component Analysis) fails to account for heavy tailed features in the data, thus producing potentially misleading results. We employ Independent Component Analysis, which both decorrelates the liquidity measures in the asset cross-section, but also reduces higher-order statistical dependencies. To measure commonality in liquidity resilience, we utilise a novel characterisation as the time required for return to a threshold liquidity level. This reflects a dimension of liquidity that is not captured by the majority of liquidity measures and has important ramifications for understanding supply and demand pressures for market makers in electronic exchanges, as well as regulators and HFTs. When the metric is mapped out across a range of thresholds, it produces the daily Liquidity Resilience Profile (LRP) for a given asset. This daily summary of liquidity resilience behaviour from the vast LOB dataset is then amenable to a functional data representation. This enables the comparison of liquidity resilience in the asset cross-section via functional linear sub-space decompositions and functional regression. The functional regression results presented here suggest that market factors for liquidity resilience (as extracted through functional principal components analysis) can explain between 10 and 40% of the variation in liquidity resilience at low liquidity thresholds, but are less explanatory at more extreme levels, where individual asset factors take effect.

Suggested Citation

  • Efstathios Panayi & Gareth Peters & Ioannis Kosmidis, 2014. "Liquidity commonality does not imply liquidity resilience commonality: A functional characterisation for ultra-high frequency cross-sectional LOB data," Papers 1406.5486,
  • Handle: RePEc:arx:papers:1406.5486

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Loriano Mancini & Angelo Ranaldo & Jan Wrampelmeyer, 2013. "Liquidity in the Foreign Exchange Market: Measurement, Commonality, and Risk Premiums," Journal of Finance, American Finance Association, vol. 68(5), pages 1805-1841, October.
    2. Thierry Foucault & Ohad Kadan & Eugene Kandel, 2005. "Limit Order Book as a Market for Liquidity," Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1171-1217.
    3. Brennan, Michael J. & Subrahmanyam, Avanidhar, 1996. "Market microstructure and asset pricing: On the compensation for illiquidity in stock returns," Journal of Financial Economics, Elsevier, vol. 41(3), pages 441-464, July.
    4. Kylie-Anne Richards & Gareth W. Peters & William Dunsmuir, 2012. "Heavy-Tailed Features and Empirical Analysis of the Limit Order Book Volume Profiles in Futures Markets," Papers 1210.7215,, revised Apr 2015.
    5. Marshall, Ben R. & Nguyen, Nhut H. & Visaltanachoti, Nuttawat, 2013. "Liquidity commonality in commodities," Journal of Banking & Finance, Elsevier, vol. 37(1), pages 11-20.
    6. Amihud, Yakov, 2002. "Illiquidity and stock returns: cross-section and time-series effects," Journal of Financial Markets, Elsevier, vol. 5(1), pages 31-56, January.
    7. Korajczyk, Robert A. & Sadka, Ronnie, 2008. "Pricing the commonality across alternative measures of liquidity," Journal of Financial Economics, Elsevier, vol. 87(1), pages 45-72, January.
    8. Chordia, Tarun & Roll, Richard & Subrahmanyam, Avanidhar, 2000. "Commonality in liquidity," Journal of Financial Economics, Elsevier, vol. 56(1), pages 3-28, April.
    9. Nina Karnaukh & Angelo Ranaldo & Paul Söderlind, 2015. "Understanding FX Liquidity," Review of Financial Studies, Society for Financial Studies, vol. 28(11), pages 3073-3108.
    10. Paul Brockman & Dennis Y. Chung & Christophe Pérignon, 2009. "Commonality in Liquidity: A Global Perspective," Post-Print hal-00461036, HAL.
    11. Pastor, Lubos & Stambaugh, Robert F., 2003. "Liquidity Risk and Expected Stock Returns," Journal of Political Economy, University of Chicago Press, vol. 111(3), pages 642-685, June.
    12. Domowitz, Ian & Hansch, Oliver & Wang, Xiaoxin, 2005. "Liquidity commonality and return co-movement," Journal of Financial Markets, Elsevier, vol. 8(4), pages 351-376, November.
    13. Sklavos, Konstantinos & Dam, Lammertjan & Scholtens, Bert, 2013. "The liquidity of energy stocks," Energy Economics, Elsevier, vol. 38(C), pages 168-175.
    14. Roll, Richard, 1984. " A Simple Implicit Measure of the Effective Bid-Ask Spread in an Efficient Market," Journal of Finance, American Finance Association, vol. 39(4), pages 1127-1139, September.
    15. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    16. Amihud, Yakov & Mendelson, Haim, 1986. "Asset pricing and the bid-ask spread," Journal of Financial Economics, Elsevier, vol. 17(2), pages 223-249, December.
    17. Riordan, Ryan & Storkenmaier, Andreas & Wagener, Martin & Sarah Zhang, S., 2013. "Public information arrival: Price discovery and liquidity in electronic limit order markets," Journal of Banking & Finance, Elsevier, vol. 37(4), pages 1148-1159.
    18. Alex Frino & Vito Mollica & Zeyang Zhou, 2014. "Commonality in Liquidity Across International Borders: Evidence from Futures Markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(8), pages 807-818, August.
    19. Craig W. Holden & Stacey Jacobsen & Avanidhar Subrahmanyam, 2014. "The Empirical Analysis of Liquidity," Foundations and Trends(R) in Finance, now publishers, vol. 8(4), pages 263-365, December.
    20. Chen, Tao & Martin, Elaine & Montague, Gary, 2009. "Robust probabilistic PCA with missing data and contribution analysis for outlier detection," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3706-3716, August.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1406.5486. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.