IDEAS home Printed from https://ideas.repec.org/p/snb/snbwpa/2010-03.html
   My bibliography  Save this paper

Liquidity in the Foreign Exchange Market: Measurement, Commonality, and Risk Premiums

Author

Listed:
  • Loriano Mancini
  • Angelo Ranaldo
  • Jan Wrampelmeyer

Abstract

This paper develops a liquidity measure tailored to the foreign exchange (FX) market, quantifies the amount of commonality in liquidity across exchange rates, and determines the extent of liquidity risk premiums embedded in FX returns. The new liquidity measure utilizes ultra high frequency data and captures cross-sectional and temporal variation in FX liquidity during the financial crisis of 2007-2008. Empirical results show that liquidity co-moves across currency pairs and that systematic FX liquidity decreases dramatically during the crisis. Extending an asset pricing model for FX returns by the novel liquidity risk factor suggests that liquidity risk is heavily priced.

Suggested Citation

  • Loriano Mancini & Angelo Ranaldo & Jan Wrampelmeyer, 2010. "Liquidity in the Foreign Exchange Market: Measurement, Commonality, and Risk Premiums," Working Papers 2010-03, Swiss National Bank.
  • Handle: RePEc:snb:snbwpa:2010-03
    as

    Download full text from publisher

    File URL: https://www.snb.ch/en/publications/research/working-papers/2010/working_paper_2010_03
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Yacine Aït-Sahalia, 2005. "How Often to Sample a Continuous-Time Process in the Presence of Market Microstructure Noise," The Review of Financial Studies, Society for Financial Studies, vol. 18(2), pages 351-416.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xilong Chen & Eric Ghysels, 2011. "News--Good or Bad--and Its Impact on Volatility Predictions over Multiple Horizons," The Review of Financial Studies, Society for Financial Studies, vol. 24(1), pages 46-81, October.
    2. Chuong Luong & Nikolai Dokuchaev, 2016. "Modeling Dependency Of Volatility On Sampling Frequency Via Delay Equations," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 11(02), pages 1-21, June.
    3. Torben G. Andersen & Tim Bollerslev & Peter Christoffersen & Francis X. Diebold, 2007. "Practical Volatility and Correlation Modeling for Financial Market Risk Management," NBER Chapters, in: The Risks of Financial Institutions, pages 513-544, National Bureau of Economic Research, Inc.
    4. Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016. "Do We Need High Frequency Data to Forecast Variances?," Annals of Economics and Statistics, GENES, issue 123-124, pages 135-174.
    5. Sucarrat, Genaro, 2009. "Forecast Evaluation of Explanatory Models of Financial Variability," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-33.
    6. Ozcan Ceylan, 2015. "Limited information-processing capacity and asymmetric stock correlations," Quantitative Finance, Taylor & Francis Journals, vol. 15(6), pages 1031-1039, June.
    7. Large, Jeremy, 2011. "Estimating quadratic variation when quoted prices change by a constant increment," Journal of Econometrics, Elsevier, vol. 160(1), pages 2-11, January.
    8. Christensen, Kim & Oomen, Roel C.A. & Podolskij, Mark, 2014. "Fact or friction: Jumps at ultra high frequency," Journal of Financial Economics, Elsevier, vol. 114(3), pages 576-599.
    9. Misaki, Hiroumi & Kunitomo, Naoto, 2015. "On robust properties of the SIML estimation of volatility under micro-market noise and random sampling," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 265-281.
    10. Grammig, Joachim G. & Peter, Franziska J., 2008. "International price discovery in the presence of market microstructure effects," CFR Working Papers 08-10, University of Cologne, Centre for Financial Research (CFR).
    11. Bollerslev, Tim & Kretschmer, Uta & Pigorsch, Christian & Tauchen, George, 2009. "A discrete-time model for daily S & P500 returns and realized variations: Jumps and leverage effects," Journal of Econometrics, Elsevier, vol. 150(2), pages 151-166, June.
    12. Wuyts, Gunther, 2008. "The impact of liquidity shocks through the limit order book," CFS Working Paper Series 2008/53, Center for Financial Studies (CFS).
    13. Shirley J. Huang & Qianqiu Liu & Jun Yu, 2007. "Realized Daily Variance of S&P 500 Cash Index: A Revaluation of Stylized Facts," Annals of Economics and Finance, Society for AEF, vol. 8(1), pages 33-56, May.
    14. Naoto Kunitomo & Hiroumi Misaki, 2013. "The SIML Estimation of Integrated Covariance and Hedging Coefficient under Micro-market noise and Random Sampling," CIRJE F-Series CIRJE-F-893, CIRJE, Faculty of Economics, University of Tokyo.
    15. E. Bacry & S. Delattre & M. Hoffmann & J. F. Muzy, 2013. "Modelling microstructure noise with mutually exciting point processes," Quantitative Finance, Taylor & Francis Journals, vol. 13(1), pages 65-77, January.
    16. Christensen, Kim & Kinnebrock, Silja & Podolskij, Mark, 2010. "Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data," Journal of Econometrics, Elsevier, vol. 159(1), pages 116-133, November.
    17. Julien Chevallier & Benoît Sévi, 2011. "On the realized volatility of the ECX CO 2 emissions 2008 futures contract: distribution, dynamics and forecasting," Annals of Finance, Springer, vol. 7(1), pages 1-29, February.
    18. Xiu, Dacheng, 2010. "Quasi-maximum likelihood estimation of volatility with high frequency data," Journal of Econometrics, Elsevier, vol. 159(1), pages 235-250, November.
    19. Ryszard Kokoszczyński & Paweł Sakowski & Robert Ślepaczuk, 2010. "Midquotes or Transactional Data? The Comparison of Black Model on HF Data," Working Papers 2010-15, Faculty of Economic Sciences, University of Warsaw.
    20. Naoto Kunitomo & Seisho Sato, 2010. "On Properties of Separating Information Maximum Likelihood Estimation of Realized Volatility and Covariance with Micro-Market Noise," CIRJE F-Series CIRJE-F-758, CIRJE, Faculty of Economics, University of Tokyo.

    More about this item

    Keywords

    foreign exchange market; measuring liquidity; commonality in liquidity; liquidity risk premium; subprime crisis;
    All these keywords.

    JEL classification:

    • F31 - International Economics - - International Finance - - - Foreign Exchange
    • G01 - Financial Economics - - General - - - Financial Crises
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:snb:snbwpa:2010-03. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Enzo Rossi (email available below). General contact details of provider: https://edirc.repec.org/data/snbgvch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.