IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1205.4089.html
   My bibliography  Save this paper

Variance Optimal Hedging for discrete time processes with independent increments. Application to Electricity Markets

Author

Listed:
  • St'ephane Goutte

    (LAGA)

  • Nadia Oudjane

    (LAGA)

  • Francesco Russo

    (CERMICS, INRIA Rocquencourt, UMA)

Abstract

We consider the discretized version of a (continuous-time) two-factor model introduced by Benth and coauthors for the electricity markets. For this model, the underlying is the exponent of a sum of independent random variables. We provide and test an algorithm, which is based on the celebrated Foellmer-Schweizer decomposition for solving the mean-variance hedging problem. In particular, we establish that decomposition explicitely, for a large class of vanilla contingent claims. Interest is devoted in the choice of rebalancing dates and its impact on the hedging error, regarding the payoff regularity and the non stationarity of the log-price process.

Suggested Citation

  • St'ephane Goutte & Nadia Oudjane & Francesco Russo, 2012. "Variance Optimal Hedging for discrete time processes with independent increments. Application to Electricity Markets," Papers 1205.4089, arXiv.org.
  • Handle: RePEc:arx:papers:1205.4089
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1205.4089
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Föllmer, H. & Schweizer, M., 1989. "Hedging by Sequential Regression: an Introduction to the Mathematics of Option Trading," ASTIN Bulletin: The Journal of the International Actuarial Association, Cambridge University Press, vol. 19(S1), pages 29-42, November.
    2. Flavio Angelini & Stefano Herzel, 2007. "Measuring the error of dynamic hedging: a Laplace transform approach," Quaderni del Dipartimento di Economia, Finanza e Statistica 33/2007, Università di Perugia, Dipartimento Economia.
    3. Flavio Angelini & Stefano Herzel, 2010. "Explicit formulas for the minimal variance hedging strategy in a martingale case," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 33(1), pages 63-79, May.
    4. Ales Černý, 2007. "Optimal Continuous-Time Hedging With Leptokurtic Returns," Mathematical Finance, Wiley Blackwell, vol. 17(2), pages 175-203.
    5. Ales Cerny, 2004. "Dynamic programming and mean-variance hedging in discrete time," Applied Mathematical Finance, Taylor & Francis Journals, vol. 11(1), pages 1-25.
    6. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    7. Fred Espen Benth & Jan Kallsen & Thilo Meyer-Brandis, 2007. "A Non-Gaussian Ornstein-Uhlenbeck Process for Electricity Spot Price Modeling and Derivatives Pricing," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(2), pages 153-169.
    8. St'ephane Goutte & Nadia Oudjane & Francesco Russo, 2009. "Variance Optimal Hedging for continuous time processes with independent increments and applications," Papers 0912.0372, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. St'ephane Goutte & Nadia Oudjane & Francesco Russo, 2013. "Variance optimal hedging for continuous time additive processes and applications," Papers 1302.1965, arXiv.org.
    2. Boroumand, Raphaël Homayoun & Goutte, Stéphane & Porcher, Simon & Porcher, Thomas, 2015. "Hedging strategies in energy markets: The case of electricity retailers," Energy Economics, Elsevier, vol. 51(C), pages 503-509.
    3. Fred Benth & Nils Detering, 2015. "Pricing and hedging Asian-style options on energy," Finance and Stochastics, Springer, vol. 19(4), pages 849-889, October.
    4. St'ephane Goutte & Nadia Oudjane & Francesco Russo, 2009. "Variance Optimal Hedging for continuous time processes with independent increments and applications," Papers 0912.0372, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1205.4089. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.