IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v21y2018i04ns0219024918500280.html
   My bibliography  Save this article

Local Risk-Minimization With Multiple Assets Under Illiquidity With Applications In Energy Markets

Author

Listed:
  • PANAGIOTIS CHRISTODOULOU

    (Department of Mathematics, University of Munich, Theresienstraße 39, 80333 Munich, Germany)

  • NILS DETERING

    (Department of Statistics & Applied Probability, University of California, Santa Barbara, CA 93106-3110, USA)

  • THILO MEYER-BRANDIS

    (Department of Mathematics, University of Munich, Theresienstraße 39, 80333 Munich, Germany)

Abstract

We propose a hedging approach for general contingent claims when liquidity is a concern and trading is subject to transaction cost. Multiple assets with different liquidity levels are available for hedging. Our risk criterion targets a tradeoff between minimizing the risk against fluctuations in the stock price and incurring low liquidity costs. We work in an arbitrage-free setting assuming a supply curve for each asset. In discrete time, we prove the existence of a locally risk-minimizing strategy under mild conditions on the price process. Under stochastic and time-dependent liquidity risk we give a closed-form solution for an optimal strategy in the case of a linear supply curve model. Finally we show how our hedging method can be applied in energy markets where futures with different maturities are available for trading. The futures closest to their delivery period are usually the most liquid but depending on the contingent claim not necessarily optimal in terms of hedging. In a simulation study, we investigate this tradeoff and compare the resulting hedge strategies with the classical ones.

Suggested Citation

  • Panagiotis Christodoulou & Nils Detering & Thilo Meyer-Brandis, 2018. "Local Risk-Minimization With Multiple Assets Under Illiquidity With Applications In Energy Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(04), pages 1-44, June.
  • Handle: RePEc:wsi:ijtafx:v:21:y:2018:i:04:n:s0219024918500280
    DOI: 10.1142/S0219024918500280
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219024918500280
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219024918500280?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    2. Martin Schweizer, 1995. "Variance-Optimal Hedging in Discrete Time," Mathematics of Operations Research, INFORMS, vol. 20(1), pages 1-32, February.
    3. Lamberton, Damien & Pham, Huyên & Schweizer, Martin, 1998. "Local risk-minimization under transaction costs," SFB 373 Discussion Papers 1998,18, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    4. Umut Çetin & Robert A. Jarrow & Philip Protter, 2008. "Liquidity risk and arbitrage pricing theory," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 8, pages 153-183, World Scientific Publishing Co. Pte. Ltd..
    5. Alexandre Roch, 2011. "Liquidity risk, price impacts and the replication problem," Finance and Stochastics, Springer, vol. 15(3), pages 399-419, September.
    6. Fred Espen Benth & Jan Kallsen & Thilo Meyer-Brandis, 2007. "A Non-Gaussian Ornstein-Uhlenbeck Process for Electricity Spot Price Modeling and Derivatives Pricing," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(2), pages 153-169.
    7. Damien Lamberton & Huyên Pham & Martin Schweizer, 1998. "Local Risk-Minimization Under Transaction Costs," Mathematics of Operations Research, INFORMS, vol. 23(3), pages 585-612, August.
    8. Peter Bank & Dietmar Baum, 2004. "Hedging and Portfolio Optimization in Financial Markets with a Large Trader," Mathematical Finance, Wiley Blackwell, vol. 14(1), pages 1-18, January.
    9. Umut Çetin & H. Soner & Nizar Touzi, 2010. "Option hedging for small investors under liquidity costs," Finance and Stochastics, Springer, vol. 14(3), pages 317-341, September.
    10. Fred Benth & Nils Detering, 2015. "Pricing and hedging Asian-style options on energy," Finance and Stochastics, Springer, vol. 19(4), pages 849-889, October.
    11. Soner, H. Mete & Cetin, Umut & Touzi, Nizar, 2010. "Option hedging for small investors under liquidity costs," LSE Research Online Documents on Economics 28992, London School of Economics and Political Science, LSE Library.
    12. Eric Beutner, 2007. "Mean–variance hedging under transaction costs," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 65(3), pages 539-557, June.
    13. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emmanuel Gobet & Isaque Pimentel & Xavier Warin, 2020. "Option valuation and hedging using an asymmetric risk function: asymptotic optimality through fully nonlinear partial differential equations," Finance and Stochastics, Springer, vol. 24(3), pages 633-675, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panagiotis Christodoulou & Nils Detering & Thilo Meyer-Brandis, 2017. "Local risk-minimization with multiple assets under illiquidity with applications in energy markets," Papers 1705.06918, arXiv.org, revised Jun 2018.
    2. Clarence Simard & Bruno Rémillard, 2019. "Pricing European Options in a Discrete Time Model for the Limit Order Book," Methodology and Computing in Applied Probability, Springer, vol. 21(3), pages 985-1005, September.
    3. Sergey Lototsky & Henry Schellhorn & Ran Zhao, 2016. "A String Model of Liquidity in Financial Markets," Papers 1608.05900, arXiv.org, revised Apr 2018.
    4. Rossella Agliardi & Ramazan Gençay, 2012. "Hedging through a Limit Order Book with Varying Liquidity," Working Paper series 12_12, Rimini Centre for Economic Analysis.
    5. Dirk Becherer & Todor Bilarev & Peter Frentrup, 2017. "Stability for gains from large investors' strategies in M1/J1 topologies," Papers 1701.02167, arXiv.org, revised Mar 2018.
    6. Olivier Guéant & Jiang Pu, 2015. "Option pricing and hedging with execution costs and market impact," Post-Print hal-01393124, HAL.
    7. Alexandre Roch, 2011. "Liquidity risk, price impacts and the replication problem," Finance and Stochastics, Springer, vol. 15(3), pages 399-419, September.
    8. Taiga Saito, 2017. "Hedging and pricing illiquid options with market impacts," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(02n03), pages 1-37, June.
    9. David German & Henry Schellhorn, 2012. "A No-Arbitrage Model of Liquidity in Financial Markets involving Brownian Sheets," Papers 1206.4804, arXiv.org.
    10. Joaquin Fernandez-Tapia & Olivier Gu'eant, 2020. "Recipes for hedging exotics with illiquid vanillas," Papers 2005.10064, arXiv.org, revised May 2020.
    11. Dirk Becherer & Todor Bilarev, 2018. "Hedging with physical or cash settlement under transient multiplicative price impact," Papers 1807.05917, arXiv.org, revised Jun 2023.
    12. Olivier Gu'eant & Jiang Pu, 2013. "Option pricing and hedging with execution costs and market impact," Papers 1311.4342, arXiv.org, revised Apr 2015.
    13. Bruno Bouchard & G. Loeper & Y. Zou, 2017. "Hedging of covered options with linear market impact and gamma constraint," Post-Print hal-01611790, HAL.
    14. Li, Zhe & Zhang, Weiguo & Zhang, Yue & Yi, Zhigao, 2019. "An analytical approximation approach for pricing European options in a two-price economy," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    15. Peter Bank & Selim Gokay, 2013. "Superreplication when trading at market indifference prices," Papers 1310.3113, arXiv.org.
    16. Yan Dolinsky & Halil Soner, 2013. "Duality and convergence for binomial markets with friction," Finance and Stochastics, Springer, vol. 17(3), pages 447-475, July.
    17. B Bouchard & G Loeper & Y Zou, 2015. "Hedging of covered options with linear market impact and gamma constraint," Papers 1512.07087, arXiv.org.
    18. Valeriy Ryabchenko & Sergey Sarykalin & Stan Uryasev, 2004. "Pricing European Options by Numerical Replication: Quadratic Programming with Constraints," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 11(3), pages 301-333, September.
    19. Frédéric Abergel & Grégoire Loeper, 2013. "Pricing and hedging contingent claims with liquidity costs and market impact," Working Papers hal-00802402, HAL.
    20. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:21:y:2018:i:04:n:s0219024918500280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.