IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1310.3113.html
   My bibliography  Save this paper

Superreplication when trading at market indifference prices

Author

Listed:
  • Peter Bank
  • Selim Gokay

Abstract

We study superreplication of European contingent claims in discrete time in a large trader model with market indifference prices recently proposed by Bank and Kramkov. We introduce a suitable notion of efficient friction in this framework, adopting a terminology introduced by Kabanov, Rasonyi, and Stricker in the context of models with proportional transaction costs. In our framework, efficient friction ensures that large positions of the investor may lead to large losses, a fact from which we derive the existence of superreplicating strategies. We illustrate that without this condition there may be no superreplicating strategy with minimal costs. In our main result, we establish efficient friction under a tail condition on the conditional distributions of the traded securities and under an asymptotic criterion on risk aversions of the market makers. Another result asserts that strict monotonicity of the conditional essential infima and suprema of the security prices is sufficient for efficient friction. We give examples that satisfy the assumptions in our conditions, which include non-degenerate finite sample space models as well as Levy processes and an affine stochastic volatility model of Barndorff-Nielsen-Shepard type.

Suggested Citation

  • Peter Bank & Selim Gokay, 2013. "Superreplication when trading at market indifference prices," Papers 1310.3113, arXiv.org.
  • Handle: RePEc:arx:papers:1310.3113
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1310.3113
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luciano Campi & Walter Schachermayer, 2006. "A super-replication theorem in Kabanov’s model of transaction costs," Finance and Stochastics, Springer, vol. 10(4), pages 579-596, December.
    2. Elisa Nicolato & Emmanouil Venardos, 2003. "Option Pricing in Stochastic Volatility Models of the Ornstein‐Uhlenbeck type," Mathematical Finance, Wiley Blackwell, vol. 13(4), pages 445-466, October.
    3. Dylan Possamai & Nizar Touzi & H. Mete Soner, 2012. "Large liquidity expansion of super-hedging costs," Papers 1208.3785, arXiv.org, revised Apr 2015.
    4. Umut Çetin & Robert A. Jarrow & Philip Protter, 2008. "Liquidity risk and arbitrage pricing theory," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 8, pages 153-183, World Scientific Publishing Co. Pte. Ltd..
    5. Elyégs Jouini & Hédi Kallal, 1995. "Arbitrage In Securities Markets With Short‐Sales Constraints," Mathematical Finance, Wiley Blackwell, vol. 5(3), pages 197-232, July.
    6. Soner, H. Mete & Cetin, Umut & Touzi, Nizar, 2010. "Option hedging for small investors under liquidity costs," LSE Research Online Documents on Economics 28992, London School of Economics and Political Science, LSE Library.
    7. repec:dau:papers:123456789/5526 is not listed on IDEAS
    8. (**), Christophe Stricker & (*), Miklós Rásonyi & Yuri Kabanov, 2002. "No-arbitrage criteria for financial markets with efficient friction," Finance and Stochastics, Springer, vol. 6(3), pages 371-382.
    9. Broadie, Mark & Cvitanic, Jaksa & Soner, H Mete, 1998. "Optimal Replication of Contingent Claims under Portfolio Constraints," The Review of Financial Studies, Society for Financial Studies, vol. 11(1), pages 59-79.
    10. Föllmer, Hans & Kramkov, D. O., 1997. "Optional decompositions under constraints," SFB 373 Discussion Papers 1997,31, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    11. Paolo Guasoni & Mikl'os R'asonyi & Walter Schachermayer, 2008. "Consistent price systems and face-lifting pricing under transaction costs," Papers 0803.4416, arXiv.org.
    12. Umut Çetin & H. Soner & Nizar Touzi, 2010. "Option hedging for small investors under liquidity costs," Finance and Stochastics, Springer, vol. 14(3), pages 317-341, September.
    13. repec:dau:papers:123456789/5647 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Bank & Selim Gökay, 2016. "Superreplication when trading at market indifference prices," Finance and Stochastics, Springer, vol. 20(1), pages 153-182, January.
    2. Niv Nayman, 2018. "Shortfall Risk Minimization Under Fixed Transaction Costs," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(05), pages 1-29, August.
    3. Paolo Guasoni & Mikl'os R'asonyi, 2015. "Hedging, arbitrage and optimality with superlinear frictions," Papers 1506.05895, arXiv.org.
    4. Clarence Simard & Bruno Rémillard, 2019. "Pricing European Options in a Discrete Time Model for the Limit Order Book," Methodology and Computing in Applied Probability, Springer, vol. 21(3), pages 985-1005, September.
    5. Bruno Bouchard & G. Loeper & Y. Zou, 2017. "Hedging of covered options with linear market impact and gamma constraint," Post-Print hal-01611790, HAL.
    6. Panagiotis Christodoulou & Nils Detering & Thilo Meyer-Brandis, 2018. "Local Risk-Minimization With Multiple Assets Under Illiquidity With Applications In Energy Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(04), pages 1-44, June.
    7. Frédéric Abergel & Grégoire Loeper, 2013. "Pricing and hedging contingent claims with liquidity costs and market impact," Working Papers hal-00802402, HAL.
    8. Sergey Lototsky & Henry Schellhorn & Ran Zhao, 2016. "A String Model of Liquidity in Financial Markets," Papers 1608.05900, arXiv.org, revised Apr 2018.
    9. Kyungsub Lee & Byoung Ki Seo, 2021. "Analytic formula for option margin with liquidity costs under dynamic delta hedging," Papers 2103.15302, arXiv.org.
    10. Marcel Blais & Philip Protter, 2012. "Signing trades and an evaluation of the Lee–Ready algorithm," Annals of Finance, Springer, vol. 8(1), pages 1-13, February.
    11. B. Bouchard & G. Loeper & Y. Zou, 2015. "Almost-sure hedging with permanent price impact," Papers 1503.05475, arXiv.org.
    12. Panagiotis Christodoulou & Nils Detering & Thilo Meyer-Brandis, 2017. "Local risk-minimization with multiple assets under illiquidity with applications in energy markets," Papers 1705.06918, arXiv.org, revised Jun 2018.
    13. Paolo Guasoni & Miklós Rásonyi & Walter Schachermayer, 2010. "The fundamental theorem of asset pricing for continuous processes under small transaction costs," Annals of Finance, Springer, vol. 6(2), pages 157-191, March.
    14. Li, Zhe & Zhang, Wei-Guo & Liu, Yong-Jun, 2018. "European quanto option pricing in presence of liquidity risk," The North American Journal of Economics and Finance, Elsevier, vol. 45(C), pages 230-244.
    15. H. Mete Soner & Mirjana Vukelja, 2016. "Utility maximization in an illiquid market in continuous time," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(2), pages 285-321, October.
    16. David German & Henry Schellhorn, 2012. "A No-Arbitrage Model of Liquidity in Financial Markets involving Brownian Sheets," Papers 1206.4804, arXiv.org.
    17. Salvatore Federico & Paul Gassiat, 2014. "Viscosity Characterization of the Value Function of an Investment-Consumption Problem in Presence of an Illiquid Asset," Journal of Optimization Theory and Applications, Springer, vol. 160(3), pages 966-991, March.
    18. Gregoire Loeper, 2013. "Option pricing with linear market impact and non-linear Black and Scholes equations," Papers 1301.6252, arXiv.org, revised Aug 2016.
    19. Mariani, Francesca & Recchioni, Maria Cristina & Ciommi, Mariateresa, 2019. "Merton’s portfolio problem including market frictions: A closed-form formula supporting the shadow price approach," European Journal of Operational Research, Elsevier, vol. 275(3), pages 1178-1189.
    20. Li, Zhe & Zhang, Wei-Guo & Liu, Yong-Jun & Zhang, Yue, 2019. "Pricing discrete barrier options under jump-diffusion model with liquidity risk," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 347-368.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1310.3113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.