IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Option pricing and hedging with execution costs and market impact

  • Olivier Gu\'eant
  • Jiang Pu
Registered author(s):

    This article considers the pricing and hedging of a call option when liquidity matters, that is, either for a large nominal or for an illiquid underlying asset. In practice, as opposed to the classical assumptions of a price-taking agent in a frictionless market, traders cannot be perfectly hedged because of execution costs and market impact. They indeed face a trade-off between hedging errors and costs that can be solved by using stochastic optimal control. Our modelling framework, which is inspired by the recent literature on optimal execution, makes it possible to account for both execution costs and the lasting market impact of trades. Prices are obtained through the indifference pricing approach. Numerical examples are provided, along with comparisons to standard methods.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    File Function: Latest version
    Download Restriction: no

    Paper provided by in its series Papers with number 1311.4342.

    in new window

    Date of creation: Nov 2013
    Date of revision: Apr 2015
    Handle: RePEc:arx:papers:1311.4342
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Jaksa Cvitanić & Ioannis Karatzas, 1996. "HEDGING AND PORTFOLIO OPTIMIZATION UNDER TRANSACTION COSTS: A MARTINGALE APPROACH-super-2," Mathematical Finance, Wiley Blackwell, vol. 6(2), pages 133-165.
    2. Longstaff, Francis A, 2001. "Optimal Portfolio Choice and the Valuation of Illiquid Securities," Review of Financial Studies, Society for Financial Studies, vol. 14(2), pages 407-31.
    3. Umut Çetin & H. Soner & Nizar Touzi, 2010. "Option hedging for small investors under liquidity costs," Finance and Stochastics, Springer, vol. 14(3), pages 317-341, September.
    4. Hayne E. Leland., 1984. "Option Pricing and Replication with Transactions Costs," Research Program in Finance Working Papers 144, University of California at Berkeley.
    5. E. Platen & M. Schweizer, 1997. "On Feedback Effects from Hedging Derivatives," SFB 373 Discussion Papers 1997,83, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    6. Halil Mete Soner & Guy Barles, 1998. "Option pricing with transaction costs and a nonlinear Black-Scholes equation," Finance and Stochastics, Springer, vol. 2(4), pages 369-397.
    7. H. Mete Soner & Umut Cetin & Nizar Touzi, 2010. "Option hedging for small investors under liquidity costs," LSE Research Online Documents on Economics 28992, London School of Economics and Political Science, LSE Library.
    8. Umut Çetin & Robert Jarrow & Philip Protter, 2004. "Liquidity risk and arbitrage pricing theory," Finance and Stochastics, Springer, vol. 8(3), pages 311-341, 08.
    9. Alexander Schied & Torsten Schoneborn & Michael Tehranchi, 2010. "Optimal Basket Liquidation for CARA Investors is Deterministic," Applied Mathematical Finance, Taylor & Francis Journals, vol. 17(6), pages 471-489.
    10. U. �etin & R. Jarrow & P. Protter & M. Warachka, 2006. "Pricing Options in an Extended Black Scholes Economy with Illiquidity: Theory and Empirical Evidence," Review of Financial Studies, Society for Financial Studies, vol. 19(2), pages 493-529.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:1311.4342. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.