IDEAS home Printed from https://ideas.repec.org/p/apk/nottec/2206.html
   My bibliography  Save this paper

A Sovereign Par Yield Curve in Dollars: A Dynamic Approach

Author

Listed:
  • César Ulate-Sancho

    (Department of Economic Research, Central Bank of Costa Rica)

  • Carlos Segura-Rodriguez

    (Department of Economic Research, Central Bank of Costa Rica)

Abstract

We estimate a weekly government debt in US dollars par yield curve for Costa Rica. To choose the estimation method, we analyze three parametric techniques: Nelson and Siegel’s method, Svensson’s method and a dynamic approach developed by Diebold et al.We use all Costa Rican sovereign debt in US dollars transactions in the primary and secondary market.We concentrate in transactions of fixed rate and zero-coupon bonds for the period between January 2009 and November 2021. The evaluation of the results from the three methods allow us to conclude that the dynamic approach shows a better balance between in-sample fit and out-of-sample forecast than the static methods. The main reason is that the static methods suffer of an over-fitting problem for those weeks with a small number of observations: they fit well the observed sample, but sometimes present atypical behavior for the curve sections in which there is not available information. The dynamic method fixes this problem by using past information to estimate an expected yield curve for any week, and then only use the new weekly information to adjust the estimation in those points in which the expected yield curve is far from those observed points. Therefore, we recommend using this dynamic method for estimating this yield curve. ***Resumen: Este estudio estima una curva de rendimiento par soberana semanal en dólares para el caso de Costa Rica. Para la selección del método de estimación se analizan tres técnicas paramétricas: el método de Nelson y Siegel (1987), el método de Svensson (1994) y un enfoque dinámico propuesto por Diebold, Rudebusch y Aruoba (2006). Se utiliza información para el periodo entre enero de 2009 y noviembre de 2021 de todas las negociaciones en mercado primario y secundario de bonos tasa fija y cero cupón emitidos por el Ministerio de Hacienda. La evaluación de los tres métodos permite concluir que el método dinámico genera un mejor compromiso entre el ajuste dentro y fuera de muestra que los dos métodos estáticos. La principal razón es que los métodos estáticos presentan un problema de sobre ajuste dentro de muestra en las semanas que se observan pocas negociaciones: ajustan bien los puntos observados, pero tienden a generar comportamientos anómalos para los tramos de la curva para los que no existe información. El método dinámico resuelve este problema al utilizar la información del pasado para ajustar la curva de rendimientos que se esperaría observar durante esa semana, y solo ajustar la estimación en aquellos puntos en los que los nuevos valores observados se alejan de la curva anticipada. Por tanto, se recomienda el uso de este método dinámico para la estimación de dicha curva de rendimientos.

Suggested Citation

  • César Ulate-Sancho & Carlos Segura-Rodriguez, 2022. "A Sovereign Par Yield Curve in Dollars: A Dynamic Approach," Notas Técnicas 2206, Banco Central de Costa Rica.
  • Handle: RePEc:apk:nottec:2206
    as

    Download full text from publisher

    File URL: https://repositorioinvestigaciones.bccr.fi.cr/handle/20.500.12506/374
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lars E.O. Svensson, 1994. "Estimating and Interpreting Forward Interest Rates: Sweden 1992 - 1994," NBER Working Papers 4871, National Bureau of Economic Research, Inc.
    2. Svensson, Lars E O, 1994. "Estimating and Interpreting Forward Interest Rates: Sweden 1992-4," CEPR Discussion Papers 1051, C.E.P.R. Discussion Papers.
    3. Nelson, Charles R & Siegel, Andrew F, 1987. "Parsimonious Modeling of Yield Curves," The Journal of Business, University of Chicago Press, vol. 60(4), pages 473-489, October.
    4. Diebold, Francis X. & Rudebusch, Glenn D. & Borag[caron]an Aruoba, S., 2006. "The macroeconomy and the yield curve: a dynamic latent factor approach," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 309-338.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Esteban Méndez-Chacón & Diana Van Patten, 2022. "Voting on a Trade Agreement: Firm Networks and Attitudes Toward Openness," Documentos de Trabajo 2204, Banco Central de Costa Rica.
    2. Ioannis A. Venetis & Avgoustinos Ladas, 2023. "Co-movement and global factors in sovereign bond yields," Bulletin of Applied Economics, Risk Market Journals, vol. 10(2), pages 17-45.
    3. Eder, Armin & Keiler, Sebastian & Pichl, Hannes, 2013. "Interest rate risk and the Swiss solvency test," Discussion Papers 41/2013, Deutsche Bundesbank.
    4. Ioannidis, Christos & Ka, Kook, 2018. "The impact of oil price shocks on the term structure of interest rates," Energy Economics, Elsevier, vol. 72(C), pages 601-620.
    5. Esteban Sánchez-Gómez, 2022. "Job Vacancy Index for Costa Rica 2010 - 2021," Notas Técnicas 2202, Banco Central de Costa Rica.
    6. Wei-Choun Yu & Donald M. Salyards, 2009. "Parsimonious modeling and forecasting of corporate yield curve," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(1), pages 73-88.
    7. Erhard RESCHENHOFER & Thomas STARK, 2019. "Forecasting the Yield Curve with Dynamic Factors," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 101-113, March.
    8. Jhonny Aguilar-Madrigal & Mauricio Vega-Araya & Luis Rivera, 2025. "Ecosystem Services Accounting in Costa Rica: Regulation, Provision, and Cultural Services," Notas Técnicas 2501, Banco Central de Costa Rica.
    9. Andrea Carriero & George Kapetanios & Massimiliano Marcellino, 2010. "Forecasting Government Bond Yields with Large Bayesian VARs," Working Papers 662, Queen Mary University of London, School of Economics and Finance.
    10. Atsushi Inoue & Barbara Rossi, 2021. "A new approach to measuring economic policy shocks, with an application to conventional and unconventional monetary policy," Quantitative Economics, Econometric Society, vol. 12(4), pages 1085-1138, November.
    11. Michał Brzoza-Brzezina & Jacek Kotłowski, 2014. "Measuring the natural yield curve," Applied Economics, Taylor & Francis Journals, vol. 46(17), pages 2052-2065, June.
    12. Tomasz P. Kostyra, 2022. "Yield Curve Modelling with the Nelson-Siegel Method for Poland," Gospodarka Narodowa. The Polish Journal of Economics, Warsaw School of Economics, issue 2, pages 44-56.
    13. Caldeira, João F. & Moura, Guilherme V. & Santos, André A.P., 2016. "Predicting the yield curve using forecast combinations," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 79-98.
    14. Lelo de Larrea Alejandra, 2020. "Forecast Comparison of the Term Structure of Interest Rates of Mexico for Different Specifications of the Affine Model," Working Papers 2020-01, Banco de México.
    15. Gaus, Eric & Sinha, Arunima, 2018. "What does the yield curve imply about investor expectations?," Journal of Macroeconomics, Elsevier, vol. 57(C), pages 248-265.
    16. Stona, Filipe & Caldeira, João F., 2019. "Do U.S. factors impact the Brazilian yield curve? Evidence from a dynamic factor model," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 76-89.
    17. Michiel De Pooter & Francesco Ravazzolo & Dick van Dijk, 2010. "Term structure forecasting using macro factors and forecast combination," International Finance Discussion Papers 993, Board of Governors of the Federal Reserve System (U.S.).
    18. Memmel, Christoph & Heckmann, Lotta, 2025. "Modeling the term structure," Discussion Papers 07/2025, Deutsche Bundesbank.
    19. Lajos Horváth & Piotr Kokoszka & Jeremy VanderDoes & Shixuan Wang, 2022. "Inference in functional factor models with applications to yield curves," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(6), pages 872-894, November.
    20. Anastasios Demertzidis & Vahidin Jeleskovic, 2021. "Empirical Estimation of Intraday Yield Curves on the Italian Interbank Credit Market e-MID," JRFM, MDPI, vol. 14(5), pages 1-23, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • E43 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Interest Rates: Determination, Term Structure, and Effects
    • H63 - Public Economics - - National Budget, Deficit, and Debt - - - Debt; Debt Management; Sovereign Debt

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:apk:nottec:2206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Departamento de Investigación Económica (email available below). General contact details of provider: https://edirc.repec.org/data/bccrrcr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.