IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v43y2022i6p872-894.html
   My bibliography  Save this article

Inference in functional factor models with applications to yield curves

Author

Listed:
  • Lajos Horváth
  • Piotr Kokoszka
  • Jeremy VanderDoes
  • Shixuan Wang

Abstract

This article develops a set of inferential methods for functional factor models that have been extensively used in modelling yield curves. Our setting accommodates both temporal dependence and heteroskedasticity. First, we introduce an estimation approach based on minimizing the least‐squares loss function and establish the consistency and asymptotic normality of the estimators. Second, we propose a goodness‐of‐fit test that allows us to determine whether a specific model fits the data. We derive the asymptotic distribution of the test statistics, and this leads to a significance test. A simulation study establishes the good finite‐sample performance of our inferential methods. An application to US and UK yield curves demonstrates the generality of our framework, which can accommodate both sparsely and densely observed yield curves.

Suggested Citation

  • Lajos Horváth & Piotr Kokoszka & Jeremy VanderDoes & Shixuan Wang, 2022. "Inference in functional factor models with applications to yield curves," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(6), pages 872-894, November.
  • Handle: RePEc:bla:jtsera:v:43:y:2022:i:6:p:872-894
    DOI: 10.1111/jtsa.12642
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jtsa.12642
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jtsa.12642?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Xianyang, 2016. "White noise testing and model diagnostic checking for functional time series," Journal of Econometrics, Elsevier, vol. 194(1), pages 76-95.
    2. Lars E.O. Svensson, 1994. "Estimating and Interpreting Forward Interest Rates: Sweden 1992 - 1994," NBER Working Papers 4871, National Bureau of Economic Research, Inc.
    3. Cavaliere, Giuseppe & Harvey, David I. & Leybourne, Stephen J. & Taylor, A.M. Robert, 2011. "Testing For Unit Roots In The Presence Of A Possible Break In Trend And Nonstationary Volatility," Econometric Theory, Cambridge University Press, vol. 27(5), pages 957-991, October.
    4. Lajos Horváth & Piotr Kokoszka & Ron Reeder, 2013. "Estimation of the mean of functional time series and a two-sample problem," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(1), pages 103-122, January.
    5. Jens H. E. Christensen & Francis X. Diebold & Glenn D. Rudebusch, 2009. "An arbitrage-free generalized Nelson--Siegel term structure model," Econometrics Journal, Royal Economic Society, vol. 12(3), pages 33-64, November.
    6. Chambers, Donald R. & Carleton, Willard T. & Waldman, Donald W., 1984. "A New Approach to Estimation of the Term Structure of Interest Rates," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 19(3), pages 233-252, September.
    7. Patrick Bardsley & Lajos Horváth & Piotr Kokoszka & Gabriel Young, 2017. "Change point tests in functional factor models with application to yield curves," Econometrics Journal, Royal Economic Society, vol. 20(1), pages 86-117, February.
    8. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    9. Svensson, Lars E O, 1994. "Estimating and Interpreting Forward Interest Rates: Sweden 1992-4," CEPR Discussion Papers 1051, C.E.P.R. Discussion Papers.
    10. Piotr Kokoszka & Hong Miao & Xi Zhang, 2015. "Functional Dynamic Factor Model for Intraday Price Curves," Journal of Financial Econometrics, Oxford University Press, vol. 13(2), pages 456-477.
    11. Nelson, Charles R & Siegel, Andrew F, 1987. "Parsimonious Modeling of Yield Curves," The Journal of Business, University of Chicago Press, vol. 60(4), pages 473-489, October.
    12. Diebold, Francis X. & Rudebusch, Glenn D. & Borag[caron]an Aruoba, S., 2006. "The macroeconomy and the yield curve: a dynamic latent factor approach," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 309-338.
    13. Yallup, Peter J., 2012. "Models of the yield curve and the curvature of the implied forward rate function," Journal of Banking & Finance, Elsevier, vol. 36(1), pages 121-135.
    14. Górecki, Tomasz & Horváth, Lajos & Kokoszka, Piotr, 2018. "Change point detection in heteroscedastic time series," Econometrics and Statistics, Elsevier, vol. 7(C), pages 63-88.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koo, Bonsoo & La Vecchia, Davide & Linton, Oliver, 2021. "Estimation of a nonparametric model for bond prices from cross-section and time series information," Journal of Econometrics, Elsevier, vol. 220(2), pages 562-588.
    2. Koo, B. & La Vecchia, D. & Linton, O., 2019. "Nonparametric Recovery of the Yield Curve Evolution from Cross-Section and Time Series Information," Cambridge Working Papers in Economics 1916, Faculty of Economics, University of Cambridge.
    3. Michał Brzoza-Brzezina & Jacek Kotłowski, 2014. "Measuring the natural yield curve," Applied Economics, Taylor & Francis Journals, vol. 46(17), pages 2052-2065, June.
    4. Caldeira, João F. & Moura, Guilherme V. & Santos, André A.P., 2016. "Bond portfolio optimization using dynamic factor models," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 128-158.
    5. Ranik Raaen Wahlstrøm & Florentina Paraschiv & Michael Schürle, 2022. "A Comparative Analysis of Parsimonious Yield Curve Models with Focus on the Nelson-Siegel, Svensson and Bliss Versions," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 967-1004, March.
    6. Atsushi Inoue & Barbara Rossi, 2021. "A new approach to measuring economic policy shocks, with an application to conventional and unconventional monetary policy," Quantitative Economics, Econometric Society, vol. 12(4), pages 1085-1138, November.
    7. Ioannis A. Venetis & Avgoustinos Ladas, 2023. "Co-movement and global factors in sovereign bond yields," Bulletin of Applied Economics, Risk Market Journals, vol. 10(2), pages 17-45.
    8. Vahidin Jeleskovic & Anastasios Demertzidis, 2018. "Comparing different methods for the estimation of interbank intraday yield curves," MAGKS Papers on Economics 201839, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    9. Memmel, Christoph & Heckmann, Lotta, 2025. "Modeling the term structure," Discussion Papers 07/2025, Deutsche Bundesbank.
    10. Jens H. E. Christensen & Jose A. Lopez & Glenn D. Rudebusch, 2010. "Inflation Expectations and Risk Premiums in an Arbitrage‐Free Model of Nominal and Real Bond Yields," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 42(s1), pages 143-178, September.
    11. Eder, Armin & Keiler, Sebastian & Pichl, Hannes, 2013. "Interest rate risk and the Swiss solvency test," Discussion Papers 41/2013, Deutsche Bundesbank.
    12. Anastasios Demertzidis & Vahidin Jeleskovic, 2021. "Empirical Estimation of Intraday Yield Curves on the Italian Interbank Credit Market e-MID," JRFM, MDPI, vol. 14(5), pages 1-23, May.
    13. Afonso, António & Martins, Manuel M.F., 2012. "Level, slope, curvature of the sovereign yield curve, and fiscal behaviour," Journal of Banking & Finance, Elsevier, vol. 36(6), pages 1789-1807.
    14. Ioannidis, Christos & Ka, Kook, 2018. "The impact of oil price shocks on the term structure of interest rates," Energy Economics, Elsevier, vol. 72(C), pages 601-620.
    15. Moreno, Manuel & Novales, Alfonso & Platania, Federico, 2018. "A term structure model under cyclical fluctuations in interest rates," Economic Modelling, Elsevier, vol. 72(C), pages 140-150.
    16. Piero C. Kauffmann & Hellinton H. Takada & Ana T. Terada & Julio M. Stern, 2022. "Learning Forecast-Efficient Yield Curve Factor Decompositions with Neural Networks," Econometrics, MDPI, vol. 10(2), pages 1-15, March.
    17. Gaus, Eric & Sinha, Arunima, 2017. "Characterizing investor expectations for assets with varying risk," Research in International Business and Finance, Elsevier, vol. 39(PB), pages 990-999.
    18. Wei-Choun Yu & Donald M. Salyards, 2009. "Parsimonious modeling and forecasting of corporate yield curve," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(1), pages 73-88.
    19. Erhard RESCHENHOFER & Thomas STARK, 2019. "Forecasting the Yield Curve with Dynamic Factors," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 101-113, March.
    20. Gaus, Eric & Sinha, Arunima, 2018. "What does the yield curve imply about investor expectations?," Journal of Macroeconomics, Elsevier, vol. 57(C), pages 248-265.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:43:y:2022:i:6:p:872-894. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.