IDEAS home Printed from https://ideas.repec.org/p/ags/uwauwp/161073.html
   My bibliography  Save this paper

Hydrological challenges to groundwater trading: lessons from south-west Western Australia

Author

Listed:
  • Skurray, James H.
  • Roberts, E.J.
  • Pannell, David J.

Abstract

Perth, Western Australia (pop. 1.6m) derives 60% of its public water supply from the Gnangara groundwater system (GGS). Horticulture, domestic self-supply, and municipal parks are other major consumers of GGS groundwater. The system supports important wetlands and groundwater-dependent ecosystems. Underlying approximately 2,200 km2 of the Swan Coastal Plain, the GGS comprises several aquifer levels with partial interconnectivity. Supplies of GGS groundwater are under unprecedented stress, due to reduced recharge and increases in extraction. Stored reserves in the superficial aquifer fell by 700 GL between 1979 and 2008. Over a similar period, annual extraction for public supply increased by more than 350% from the system overall. Some management areas are over-allocated by as much as 69%. One potential policy response is a trading scheme for groundwater use. There has been only limited trading between GGS irrigators. Design and implementation of a robust groundwater trading scheme faces hydrological and/or hydro-economic challenges, among others. Groundwater trading involves transfers of the right to extract water. The resulting potential for spatial (and temporal) redistribution of the impacts of extraction requires management. Impacts at the respective selling and buying locations may differ in scale and nature. Negative externalities from groundwater trading may be uncertain as well as not monetarily compensable. An ideal groundwater trading scheme would ensure that marginal costs from trades do not exceed marginal benefits, incorporating future effects and impacts on third parties. If this condition could be met, all transactions would result in constant or improved overall welfare. This paper examines issues that could reduce public welfare if groundwater trading is not subject to well-designed governance arrangements that are appropriate to meeting the above condition. It also outlines some opportunities to address key risks within the design of a groundwater trading scheme. We present a number of challenges, focusing on those with hydrological bases and/or information requirements. These include the appropriate hydrological definition of the boundaries of a trading area, the establishment and defining of sustainable yield and consumptive pool, and the estimation of effects of extractions on ecosystems and human users. We suggest several possible design tools. A combination of sustainable extraction limits, trading rules, management areas, and/or exchange rates may enable a trading scheme to address the above goals.

Suggested Citation

  • Skurray, James H. & Roberts, E.J. & Pannell, David J., 2013. "Hydrological challenges to groundwater trading: lessons from south-west Western Australia," Working Papers 161073, University of Western Australia, School of Agricultural and Resource Economics.
  • Handle: RePEc:ags:uwauwp:161073
    DOI: 10.22004/ag.econ.161073
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/161073/files/WP130007R.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.161073?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gohar, Abdelaziz A. & Ward, Frank A., 2010. "Gains from expanded irrigation water trading in Egypt: An integrated basin approach," Ecological Economics, Elsevier, vol. 69(12), pages 2535-2548, October.
    2. Hearne, Robert R. & William Easter, K., 1997. "The economic and financial gains from water markets in Chile," Agricultural Economics, Blackwell, vol. 15(3), pages 187-199, January.
    3. Howe, Charles W., 2002. "Policy issues and institutional impediments in the management of groundwater: lessons from case studies," Environment and Development Economics, Cambridge University Press, vol. 7(4), pages 625-641, October.
    4. Michael D. Young & Jim C. McColl, 2009. "Double trouble: the importance of accounting for and defining water entitlements consistent with hydrological realities ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 53(1), pages 19-35, January.
    5. Qureshi, M. Ejaz & Shi, Tian & Qureshi, Sumaira E. & Proctor, Wendy, 2009. "Removing barriers to facilitate efficient water markets in the Murray-Darling Basin of Australia," Agricultural Water Management, Elsevier, vol. 96(11), pages 1641-1651, November.
    6. James H. Skurray & Ram Pandit & David J. Pannell, 2013. "Institutional impediments to groundwater trading: the case of the Gnangara groundwater system of Western Australia," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 56(7), pages 1046-1072, September.
    7. Anna Heaney & Gavan Dwyer & Stephen Beare & Deborah Peterson & Lili Pechey, 2006. "Third-party effects of water trading and potential policy responses ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 50(3), pages 277-293, September.
    8. Howitt, Richard E., 1994. "Empirical analysis of water market institutions: The 1991 California water market," Resource and Energy Economics, Elsevier, vol. 16(4), pages 357-371, November.
    9. Brozovic, Nicholas & Sunding, David L. & Zilberman, David, 2010. "On the spatial nature of the groundwater pumping externality," Resource and Energy Economics, Elsevier, vol. 32(2), pages 154-164, April.
    10. Quiggin, John C., 2001. "Environmental economics and the Murray-Darling river system," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 45(1), pages 1-28.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Skurray, James H., 2015. "The scope for collective action in a large groundwater basin: An institutional analysis of aquifer governance in Western Australia," Ecological Economics, Elsevier, vol. 114(C), pages 128-140.
    2. James H. Skurray & Ram Pandit & David J. Pannell, 2013. "Institutional impediments to groundwater trading: the case of the Gnangara groundwater system of Western Australia," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 56(7), pages 1046-1072, September.
    3. Ellen M. Bruno & Richard J. Sexton, 2020. "The Gains from Agricultural Groundwater Trade and the Potential for Market Power: Theory and Application," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(3), pages 884-910, May.
    4. Cécile Hérivaux & Jean-Daniel Rinaudo & Marielle Montginoul, 2019. "Exploring the Potential of Groundwater Markets in Agriculture: Results of a Participatory Evaluation in Five French Case Studies," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-28, September.
    5. Mallawaarachchi, Thilak & Auricht, Christopher & Loch, Adam & Adamson, David & Quiggin, John, 2020. "Water allocation in Australia’s Murray–Darling Basin: Managing change under heightened uncertainty," Economic Analysis and Policy, Elsevier, vol. 66(C), pages 345-369.
    6. Crossman, Neville D. & Connor, Jeffrey D. & Bryan, Brett A. & Summers, David M. & Ginnivan, John, 2010. "Reconfiguring an irrigation landscape to improve provision of ecosystem services," Ecological Economics, Elsevier, vol. 69(5), pages 1031-1042, March.
    7. Hansen, Kristiana & Howitt, Richard E. & Williams, Jeffrey C., 2006. "Implementing Options Markets in California To Manage Water Supply Uncertainty," 2006 Annual meeting, July 23-26, Long Beach, CA 21218, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    8. Claire Settre & Jeff Connor & Sarah Ann Wheeler, 2017. "Reviewing the Treatment of Uncertainty in Hydro-economic Modeling of the Murray–Darling Basin, Australia," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 1-35, July.
    9. Li Zhang & Shao Jia & Chi Leung & Li Guo, 2013. "An Analysis on the Transaction Costs of Water Markets under DPA and UPA Auctions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(2), pages 475-484, January.
    10. Agbola, Frank W. & Evans, Nigel, 2012. "Modelling rice and cotton acreage response in the Murray Darling Basin in Australia," Agricultural Systems, Elsevier, vol. 107(C), pages 74-82.
    11. Peggy Schrobback & David Adamson & John Quiggin, 2011. "Turning Water into Carbon: Carbon Sequestration and Water Flow in the Murray–Darling Basin," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 49(1), pages 23-45, May.
    12. Edwyna Harris, 2011. "The Impact of Institutional Path Dependence on Water Market Efficiency in Victoria, Australia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(15), pages 4069-4080, December.
    13. Garrick, Dustin & Whitten, Stuart M. & Coggan, Anthea, 2013. "Understanding the evolution and performance of water markets and allocation policy: A transaction costs analysis framework," Ecological Economics, Elsevier, vol. 88(C), pages 195-205.
    14. Azad, Md A.S. & Ancev, Tihomir, 2010. "Using ecological indices to measure economic and environmental performance of irrigated agriculture," Ecological Economics, Elsevier, vol. 69(8), pages 1731-1739, June.
    15. Dyack, Brenda & Greiner, Romy, 2006. "Natural Resource Management and Indigenous Well Being," 2006 Conference (50th), February 8-10, 2006, Sydney, Australia 139725, Australian Agricultural and Resource Economics Society.
    16. Gholamreza Soltani & Mahmood Saboohi, 2009. "Economic and Social Impacts of Groundwater Overdraft: The Case of Iran," Working Papers 479, Economic Research Forum, revised Mar 2009.
    17. Pfeiffer, Lisa & Lin, C.-Y. Cynthia, 2012. "Groundwater pumping and spatial externalities in agriculture," Journal of Environmental Economics and Management, Elsevier, vol. 64(1), pages 16-30.
    18. Roumasset James & Wada Christopher A, 2011. "Ordering Renewable Resources: Groundwater, Recycling, and Desalination," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 11(1), pages 1-29, May.
    19. Rouhi Rad, Mani & Haacker, Erin M.K. & Sharda, Vaishali & Nozari, Soheil & Xiang, Zaichen & Araya, A. & Uddameri, Venkatesh & Suter, Jordan F. & Gowda, Prasanna, 2020. "MOD$$AT: A hydro-economic modeling framework for aquifer management in irrigated agricultural regions," Agricultural Water Management, Elsevier, vol. 238(C).
    20. Pamela Katic, 2015. "Groundwater Spatial Dynamics and Endogenous Well Location," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(1), pages 181-196, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:uwauwp:161073. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/aruwaau.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aruwaau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.