IDEAS home Printed from https://ideas.repec.org/p/ags/pugtwp/333202.html
   My bibliography  Save this paper

Welfare implications of increasing spatial resolution in national CGE models for climate change impact assessment

Author

Listed:
  • Standardi, Gabriele
  • Dasgupta, Shouro

Abstract

Computable General Equilibrium (CGE) models are a widespread tool to assess the economic impacts of climate change because they allow to capture the inter-sectoral and inter-regional interactions of the environmental and climatic shocks. The geographical resolution adopted in CGE models is usually the country level, however, climate impacts can be heterogenous even within countries as regions located at different latitudes or altitudes respond differently to changes in temperature and precipitations. Our aim in this work is to evaluate the welfare implications of increasing the spatial resolution of a CGE model when combined with sub-national level impacts of climatic change on sectoral Gross Value Added (GVA) derived through spatial econometrics. We compare a standard version of a national CGE model calibrated for Italy with its sub-national version (twenty Italian NUTS-2 regions). The objective is not only to show that the aggregated results obtained can differ in terms of national GDP loss but also to provide an economic explanation for these differences. Specifically, we will explain the importance of intra-national trade (flows of imports and exports between sub-national units) and capital/labour re-location across regions. These economic channels are absent in the national version of the CGE.

Suggested Citation

  • Standardi, Gabriele & Dasgupta, Shouro, 2020. "Welfare implications of increasing spatial resolution in national CGE models for climate change impact assessment," Conference papers 333202, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
  • Handle: RePEc:ags:pugtwp:333202
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/333202/files/10932.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Valentina Bosetti & Carlo Carraro & Marzio Galeotti & Emanuele Massetti & Massimo Tavoni, 2006. "WITCH. A World Induced Technical Change Hybrid Model," Working Papers 2006_46, Department of Economics, University of Venice "Ca' Foscari".
    2. Zhang, Peng & Deschenes, Olivier & Meng, Kyle & Zhang, Junjie, 2018. "Temperature effects on productivity and factor reallocation: Evidence from a half million chinese manufacturing plants," Journal of Environmental Economics and Management, Elsevier, vol. 88(C), pages 1-17.
    3. Bosello, Francesco & Eboli, Fabio & Pierfederici, Roberta, 2012. "Assessing the Economic Impacts of Climate Change. An Updated CGE Point of View," Climate Change and Sustainable Development 121700, Fondazione Eni Enrico Mattei (FEEM).
    4. Eboli, Fabio & Parrado, Ramiro & Roson, Roberto, 2010. "Climate-change feedback on economic growth: explorations with a dynamic general equilibrium model," Environment and Development Economics, Cambridge University Press, vol. 15(5), pages 515-533, October.
    5. Desmet, Klaus & Rossi-Hansberg, Esteban, 2015. "On the spatial economic impact of global warming," Journal of Urban Economics, Elsevier, vol. 88(C), pages 16-37.
    6. Baltagi, Badi H. & Song, Seuck Heun & Koh, Won, 2003. "Testing panel data regression models with spatial error correlation," Journal of Econometrics, Elsevier, vol. 117(1), pages 123-150, November.
    7. Roberto Roson & Dominique Van der Mensbrugghe, 2012. "Climate change and economic growth: impacts and interactions," International Journal of Sustainable Economy, Inderscience Enterprises Ltd, vol. 4(3), pages 270-285.
    8. Francesco Bosello & Robert Nicholls & Julie Richards & Roberto Roson & Richard Tol, 2012. "Economic impacts of climate change in Europe: sea-level rise," Climatic Change, Springer, vol. 112(1), pages 63-81, May.
    9. Andrea Bigano & Francesco Bosello & Roberto Roson & Richard Tol, 2008. "Economy-wide impacts of climate change: a joint analysis for sea level rise and tourism," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 13(8), pages 765-791, October.
    10. Richard Tol, 2012. "On the Uncertainty About the Total Economic Impact of Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 53(1), pages 97-116, September.
    11. Roy Darwin & Richard Tol, 2001. "Estimates of the Economic Effects of Sea Level Rise," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 19(2), pages 113-129, June.
    12. Francesco Bosello & Fabio Eboli & Roberta Pierfederici, 2012. "Assessing the Economic Impacts of Climate Change," Review of Environment, Energy and Economics - Re3, Fondazione Eni Enrico Mattei, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richard S. J. Tol & Robert J. Nicholls & Sally Brown & Jochen Hinkel & Athanasios T. Vafeidis & Tom Spencer & Mark Schuerch, 2016. "Comment on ‘The Global Impacts of Extreme Sea-Level Rise: A Comprehensive Economic Assessment’," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(2), pages 341-344, June.
    2. Valeria Costantini & Anil Markandya & Elena Paglialunga & Giorgia Sforna, 2018. "Impact and distribution of climatic damages: a methodological proposal with a dynamic CGE model applied to global climate negotiations," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 35(3), pages 809-843, December.
    3. Theodoros N. Chatzivasileiadis & Marjan W. Hofkes & Onno J. Kuik & Richard S.J. Tol, 2016. "Full economic impacts of sea level rise: loss of productive resources and transport disruptions," Working Paper Series 09916, Department of Economics, University of Sussex Business School.
    4. Gabriele Standardi, 2023. "Exploring market-driven adaptation to climate change in a general equilibrium global trade model," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(2), pages 1-29, February.
    5. Theodoros N. Chatzivasileiadis & Marjan W. Hofkes & Onno J. Kuik & Richard S.J. Tol, 2016. "Full economic impacts of sea level rise: loss of productive resources and transport disruptions," Working Paper Series 9916, Department of Economics, University of Sussex.
    6. Hjort, Ingrid, 2016. "Potential Climate Risks in Financial Markets: A Literature Overview," Memorandum 01/2016, Oslo University, Department of Economics.
    7. Gregory Casey & Soheil Shayegh & Juan Moreno-Cruz & Martin Bunzl & Oded Galor & Ken Caldeira, 2019. "The Impact of Climate Change on Fertility," Working Papers 2019-2, Brown University, Department of Economics.
    8. Bosello, Francesco & De Cian, Enrica, 2014. "Climate change, sea level rise, and coastal disasters. A review of modeling practices," Energy Economics, Elsevier, vol. 46(C), pages 593-605.
    9. Mahbub Ul Hasan & Evangelia G. Drakou & Efthimios Karymbalis & Alexandra Tragaki & Christina Gallousi & Camino Liquete, 2022. "Modelling and Mapping Coastal Protection: Adapting an EU-Wide Model to National Specificities," Sustainability, MDPI, vol. 15(1), pages 1-21, December.
    10. Gregory Casey & Soheil Shayegh & Juan Moreno-Cruz & Martin Bunzl & Oded Galor & Ken Caldeira, 2019. "The Impact of Climate Change on Fertility," Working Papers 2019-2, Brown University, Department of Economics.
    11. Richard S J Tol, 2018. "The Economic Impacts of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 4-25.
    12. Makoto Tamura & Naoko Kumano & Mizuki Yotsukuri & Hiromune Yokoki, 2019. "Global assessment of the effectiveness of adaptation in coastal areas based on RCP/SSP scenarios," Climatic Change, Springer, vol. 152(3), pages 363-377, March.
    13. Roberto Roson & Richard Damania, 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity: an Assessment of Alternative Scenarios," IEFE Working Papers 84, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    14. T. Chatzivasileiadis & F. Estrada & M. W. Hofkes & R. S. J. Tol, 2019. "Systematic Sensitivity Analysis of the Full Economic Impacts of Sea Level Rise," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 1183-1217, March.
    15. Richard Tol, 2015. "Bootstraps for Meta-Analysis with an Application to the Impact of Climate Change," Computational Economics, Springer;Society for Computational Economics, vol. 46(2), pages 287-303, August.
    16. Osamu Nishiura & Makoto Tamura & Shinichiro Fujimori & Kiyoshi Takahashi & Junya Takakura & Yasuaki Hijioka, 2020. "An Assessment of Global Macroeconomic Impacts Caused by Sea Level Rise Using the Framework of Shared Socioeconomic Pathways and Representative Concentration Pathways," Sustainability, MDPI, vol. 12(9), pages 1-12, May.
    17. Wei Xie & Qi Cui & Tariq Ali, 2019. "Role of market agents in mitigating the climate change effects on food economy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(3), pages 1215-1231, December.
    18. Ciola, Emanuele & Turco, Enrico & Gurgone, Andrea & Bazzana, Davide & Vergalli, Sergio & Menoncin, Francesco, 2023. "Enter the MATRIX model:a Multi-Agent model for Transition Risks with application to energy shocks," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
    19. Peter H. Howard & Thomas Sterner, 2017. "Few and Not So Far Between: A Meta-analysis of Climate Damage Estimates," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(1), pages 197-225, September.
    20. Roson, Roberto & Damania, Richard, 2017. "The macroeconomic impact of future water scarcity," Journal of Policy Modeling, Elsevier, vol. 39(6), pages 1141-1162.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:pugtwp:333202. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/gtpurus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.