IDEAS home Printed from https://ideas.repec.org/p/ags/nceewp/348910.html

Monetizing the impacts of ocean warming and acidification on shellfisheries of the United States and Canada

Author

Listed:
  • Moore, Chris
  • Tai, Travis
  • Hartin, Corinne
  • Pacella, Stephen R.

Abstract

Anthropogenic greenhouse gas emissions are driving changes in marine environments and affecting marine fisheries. In the coming decades, ocean warming and acidification will cause changes in the habitable range and stocks of commercially valuable shellfish species. This study estimates the monetary impacts to shellfish consumers in the US and Canada using an inverse demand and consumer welfare model. Taking harvest forecasts for 17 types of shellfish under two greenhouse gas emissions scenarios through the end of this century, we model consumer substitution patterns, changes in expenditures, and annual welfare impacts in shellfish markets. Finally, we use the welfare results to estimate a reduced form damage function that can be used in existing integrated assessment models for climate policy analysis. We find that US consumers experience damages far greater than Canadian consumers due to the relative size of the markets in each country and differences in habitat suitability as waters off the coasts of both countries become warmer and more acidic. The net present value of impacts through 2100 to US consumers is about $11.3 billion USD and $850 million USD for Canadian consumers. Our model results also allow us to monetize the impacts of warming and acidification separately, showing that most of the consumer welfare impacts are attributable to warming and a small fraction of total damages can be attributed to acidification.

Suggested Citation

  • Moore, Chris & Tai, Travis & Hartin, Corinne & Pacella, Stephen R., 2024. "Monetizing the impacts of ocean warming and acidification on shellfisheries of the United States and Canada," National Center for Environmental Economics-NCEE Working Papers 348910, United States Environmental Protection Agency (EPA).
  • Handle: RePEc:ags:nceewp:348910
    DOI: 10.22004/ag.econ.348910
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/348910/files/2024-03_GS.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.348910?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Moschini, GianCarlo & Vissa, Anuradha, 1992. "A Linear Inverse Demand System," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 17(2), pages 1-9, December.
    2. Tai, Travis C. & Harley, Christopher D.G. & Cheung, William W.L., 2018. "Comparing model parameterizations of the biophysical impacts of ocean acidification to identify limitations and uncertainties," Ecological Modelling, Elsevier, vol. 385(C), pages 1-11.
    3. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moore, Chris, 2015. "Welfare Estimates of Avoided Ocean Acidification in the U.S. Mollusk Market," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 40(01), pages 1-13.
    2. Roberto Roson & Richard Damania, the World Bank, Washington D.C., 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity," EcoMod2016 9167, EcoMod.
    3. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.
    4. Stefano Castruccio & Joseph Guinness, 2017. "An evolutionary spectrum approach to incorporate large-scale geographical descriptors on global processes," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(2), pages 329-344, February.
    5. Voisin, Nathalie & Dyreson, Ana & Fu, Tao & O'Connell, Matt & Turner, Sean W.D. & Zhou, Tian & Macknick, Jordan, 2020. "Impact of climate change on water availability and its propagation through the Western U.S. power grid," Applied Energy, Elsevier, vol. 276(C).
    6. G. Cornelis van Kooten & Mark E. Eiswerth & Jonathon Izett & Alyssa R. Russell, 2021. "Climate Change and the Social Cost of Carbon: DICE Explained and Expanded," Working Papers 2021-01, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.
    7. Fraga, H. & García de Cortázar Atauri, I. & Santos, J.A, 2018. "Viticultural irrigation demands under climate change scenarios in Portugal," Agricultural Water Management, Elsevier, vol. 196(C), pages 66-74.
    8. Sulin Tao & Shuanghe Shen & Yuhong Li & Qi Wang & Ping Gao & Isaac Mugume, 2016. "Projected Crop Production under Regional Climate Change Using Scenario Data and Modeling: Sensitivity to Chosen Sowing Date and Cultivar," Sustainability, MDPI, vol. 8(3), pages 1-23, February.
    9. Cristina Cattaneo & Emanuele Massetti, 2019. "Does Harmful Climate Increase Or Decrease Migration? Evidence From Rural Households In Nigeria," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 10(04), pages 1-36, November.
    10. Pascalle Smith & Georg Heinrich & Martin Suklitsch & Andreas Gobiet & Markus Stoffel & Jürg Fuhrer, 2014. "Station-scale bias correction and uncertainty analysis for the estimation of irrigation water requirements in the Swiss Rhone catchment under climate change," Climatic Change, Springer, vol. 127(3), pages 521-534, December.
    11. Klaus Desmet & Robert E. Kopp & Scott A. Kulp & Dávid Krisztián Nagy & Michael Oppenheimer & Esteban Rossi-Hansberg & Benjamin H. Strauss, 2021. "Evaluating the Economic Cost of Coastal Flooding," American Economic Journal: Macroeconomics, American Economic Association, vol. 13(2), pages 444-486, April.
    12. repec:osf:socarx:7kfxv_v1 is not listed on IDEAS
    13. T.M.L. Wigley, 2018. "The Paris warming targets: emissions requirements and sea level consequences," Climatic Change, Springer, vol. 147(1), pages 31-45, March.
    14. Richards, Timothy J. & Patterson, Paul M., 2002. "Strategic Interaction With Multiple Tools: A New Empirical Model," Working Papers 28545, Arizona State University, Morrison School of Agribusiness and Resource Management.
    15. repec:ags:aaea22:343581 is not listed on IDEAS
    16. Dan Yan & Mingtian Yao & Fulco Ludwig & Pavel Kabat & He Qing Huang & Ronald W. A. Hutjes & Saskia E. Werners, 2018. "Exploring Future Water Shortage for Large River Basins under Different Water Allocation Strategies," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(9), pages 3071-3086, July.
    17. Rahn, Eric & Vaast, Philippe & Läderach, Peter & van Asten, Piet & Jassogne, Laurence & Ghazoul, Jaboury, 2018. "Exploring adaptation strategies of coffee production to climate change using a process-based model," Ecological Modelling, Elsevier, vol. 371(C), pages 76-89.
    18. Hjertstrand, Per, 2025. "The marginal utility of income and homogeneous demand systems," Journal of Economic Behavior & Organization, Elsevier, vol. 229(C).
    19. Jonathan D. Moyer & Audrey Pirzadeh & Mohammod Irfan & José Solórzano & Barbara Stone & Yutang Xiong & Taylor Hanna & Barry B. Hughes, 2023. "How many people will live in poverty because of climate change? A macro-level projection analysis to 2070," Climatic Change, Springer, vol. 176(10), pages 1-18, October.
    20. Islam, AFM Tariqul & Islam, AKM Saiful & Islam, GM Tarekul & Bala, Sujit Kumar & Salehin, Mashfiqus & Choudhury, Apurba Kanti & Dey, Nepal C. & Hossain, Akbar, 2022. "Adaptation strategies to increase water productivity of wheat under changing climate," Agricultural Water Management, Elsevier, vol. 264(C).
    21. Jaewon Kwak & Huiseong Noh & Soojun Kim & Vijay P. Singh & Seung Jin Hong & Duckgil Kim & Keonhaeng Lee & Narae Kang & Hung Soo Kim, 2014. "Future Climate Data from RCP 4.5 and Occurrence of Malaria in Korea," IJERPH, MDPI, vol. 11(10), pages 1-19, October.
    22. Hwang, In Chang, 2013. "Stochastic Kaya model and its applications," MPRA Paper 55099, University Library of Munich, Germany.

    More about this item

    Keywords

    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:nceewp:348910. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/nepgvus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.