IDEAS home Printed from https://ideas.repec.org/p/osf/eartha/uvw3s.html
   My bibliography  Save this paper

Uncertainty in sea level rise projections due to the dependence between contributors

Author

Listed:
  • Le Bars, Dewi

Abstract

Sea level rises at an accelerating pace threatening coastal communities all over the world. In this context sea level projections are key tools to help risk mitigation and adaptation. Sea level projections are often made using models of the main contributors to sea level rise (e.g. thermal expansion, glaciers, ice sheets...). To obtain the total sea level these contributions are added, therefore the uncertainty of total sea level depends on the correlation between the uncertainties of the contributors. This fact is important to understand the differences in the uncertainty of sea level projections from different methods. Using two process-based models to project sea level for the 21st century, we show how to model the correlation structure and its time dependence. In these models the correlation primarily arises from uncertainty of future global mean surface temperature that correlates with almost all contributors. Assuming that sea level contributors are independent of each other, an assumption made in many sea level projections, underestimates the uncertainty in sea level projections. As a result, high-end low probability events that are important for decision making are underestimated. The uncertainty in the strength of the dependence between contributors is also explored. New dependence relation between the uncertainty of dynamical processes, and surface mass balance in glaciers and ice sheets are introduced in our model. Total sea level uncertainty is found to be as sensitive to the dependence between contributors as to uncertainty in individual contributors like thermal expansion and Greenland ice sheet.

Suggested Citation

  • Le Bars, Dewi, 2018. "Uncertainty in sea level rise projections due to the dependence between contributors," Earth Arxiv uvw3s, Center for Open Science.
  • Handle: RePEc:osf:eartha:uvw3s
    DOI: 10.31219/osf.io/uvw3s
    as

    Download full text from publisher

    File URL: https://osf.io/download/5aa14fa6f25d10000d3a3acd/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/uvw3s?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    2. Robert M. DeConto & David Pollard, 2016. "Contribution of Antarctica to past and future sea-level rise," Nature, Nature, vol. 531(7596), pages 591-597, March.
    3. J. L. Bamber & W. P. Aspinall, 2013. "An expert judgement assessment of future sea level rise from the ice sheets," Nature Climate Change, Nature, vol. 3(4), pages 424-427, April.
    4. Faezeh M. Nick & Andreas Vieli & Morten Langer Andersen & Ian Joughin & Antony Payne & Tamsin L. Edwards & Frank Pattyn & Roderik S. W. van de Wal, 2013. "Future sea-level rise from Greenland’s main outlet glaciers in a warming climate," Nature, Nature, vol. 497(7448), pages 235-238, May.
    5. Carling C. Hay & Eric Morrow & Robert E. Kopp & Jerry X. Mitrovica, 2015. "Probabilistic reanalysis of twentieth-century sea-level rise," Nature, Nature, vol. 517(7535), pages 481-484, January.
    6. Thomas Wahl & Shaleen Jain & Jens Bender & Steven D. Meyers & Mark E. Luther, 2015. "Increasing risk of compound flooding from storm surge and rainfall for major US cities," Nature Climate Change, Nature, vol. 5(12), pages 1093-1097, December.
    7. Aimée B. A. Slangen & John A. Church & Cecile Agosta & Xavier Fettweis & Ben Marzeion & Kristin Richter, 2016. "Anthropogenic forcing dominates global mean sea-level rise since 1970," Nature Climate Change, Nature, vol. 6(7), pages 701-705, July.
    8. Christopher M. Little & Radley M. Horton & Robert E. Kopp & Michael Oppenheimer & Gabriel A. Vecchi & Gabriele Villarini, 2015. "Joint projections of US East Coast sea level and storm surge," Nature Climate Change, Nature, vol. 5(12), pages 1114-1120, December.
    9. Caroline Katsman & A. Sterl & J. Beersma & H. Brink & J. Church & W. Hazeleger & R. Kopp & D. Kroon & J. Kwadijk & R. Lammersen & J. Lowe & M. Oppenheimer & H. Plag & J. Ridley & H. Storch & D. Vaugha, 2011. "Exploring high-end scenarios for local sea level rise to develop flood protection strategies for a low-lying delta—the Netherlands as an example," Climatic Change, Springer, vol. 109(3), pages 617-645, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jasper Verschuur & Dewi Bars & Caroline A. Katsman & Sierd de Vries & Roshanka Ranasinghe & Sybren S. Drijfhout & Stefan G. J. Aarninkhof, 2020. "Implications of ambiguity in Antarctic ice sheet dynamics for future coastal erosion estimates: a probabilistic assessment," Climatic Change, Springer, vol. 162(2), pages 859-876, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klaus Desmet & Robert E. Kopp & Scott A. Kulp & Dávid Krisztián Nagy & Michael Oppenheimer & Esteban Rossi-Hansberg & Benjamin H. Strauss, 2021. "Evaluating the Economic Cost of Coastal Flooding," American Economic Journal: Macroeconomics, American Economic Association, vol. 13(2), pages 444-486, April.
    2. Ming Li & Fan Zhang & Samuel Barnes & Xiaohong Wang, 2020. "Assessing storm surge impacts on coastal inundation due to climate change: case studies of Baltimore and Dorchester County in Maryland," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 2561-2588, September.
    3. Maya K. Buchanan & Robert E. Kopp & Michael Oppenheimer & Claudia Tebaldi, 2016. "Allowances for evolving coastal flood risk under uncertain local sea-level rise," Climatic Change, Springer, vol. 137(3), pages 347-362, August.
    4. Tina Dura & Andra J. Garner & Robert Weiss & Robert E. Kopp & Simon E. Engelhart & Robert C. Witter & Richard W. Briggs & Charles S. Mueller & Alan R. Nelson & Benjamin P. Horton, 2021. "Changing impacts of Alaska-Aleutian subduction zone tsunamis in California under future sea-level rise," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    5. Ashley C. Freeman & Walker S. Ashley, 2017. "Changes in the US hurricane disaster landscape: the relationship between risk and exposure," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 659-682, September.
    6. T.M.L. Wigley, 2018. "The Paris warming targets: emissions requirements and sea level consequences," Climatic Change, Springer, vol. 147(1), pages 31-45, March.
    7. Tony E. Wong & Alexander M. R. Bakker & Klaus Keller, 2017. "Impacts of Antarctic fast dynamics on sea-level projections and coastal flood defense," Climatic Change, Springer, vol. 144(2), pages 347-364, September.
    8. Kai Yin & Sudong Xu & Quan Zhao & Nini Zhang & Mengqi Li, 2021. "Effects of sea surface warming and sea-level rise on tropical cyclone and inundation modeling at Shanghai coast," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 755-784, October.
    9. Emily Ho & David V. Budescu & Valentina Bosetti & Detlef P. Vuuren & Klaus Keller, 2019. "Not all carbon dioxide emission scenarios are equally likely: a subjective expert assessment," Climatic Change, Springer, vol. 155(4), pages 545-561, August.
    10. R. Dean Hardy & Bryan L. Nuse, 2016. "Global sea-level rise: weighing country responsibility and risk," Climatic Change, Springer, vol. 137(3), pages 333-345, August.
    11. Pramod K. Singh & Konstantinos Papageorgiou & Harpalsinh Chudasama & Elpiniki I. Papageorgiou, 2019. "Evaluating the Effectiveness of Climate Change Adaptations in the World’s Largest Mangrove Ecosystem," Sustainability, MDPI, vol. 11(23), pages 1-17, November.
    12. Perry C. Oddo & Ben S. Lee & Gregory G. Garner & Vivek Srikrishnan & Patrick M. Reed & Chris E. Forest & Klaus Keller, 2020. "Deep Uncertainties in Sea‐Level Rise and Storm Surge Projections: Implications for Coastal Flood Risk Management," Risk Analysis, John Wiley & Sons, vol. 40(1), pages 153-168, January.
    13. A. Slangen & M. Carson & C. Katsman & R. van de Wal & A. Köhl & L. Vermeersen & D. Stammer, 2014. "Projecting twenty-first century regional sea-level changes," Climatic Change, Springer, vol. 124(1), pages 317-332, May.
    14. Alexander M. R. Bakker & Domitille Louchard & Klaus Keller, 2017. "Sources and implications of deep uncertainties surrounding sea-level projections," Climatic Change, Springer, vol. 140(3), pages 339-347, February.
    15. Joel Katzav & Erica L. Thompson & James Risbey & David A. Stainforth & Seamus Bradley & Mathias Frisch, 2021. "On the appropriate and inappropriate uses of probability distributions in climate projections and some alternatives," Climatic Change, Springer, vol. 169(1), pages 1-20, November.
    16. Thomas David Pol & Jochen Hinkel, 2019. "Uncertainty representations of mean sea-level change: a telephone game?," Climatic Change, Springer, vol. 152(3), pages 393-411, March.
    17. Jérémy Rohmer & Gonéri Cozannet & Jean-Charles Manceau, 2019. "Addressing ambiguity in probabilistic assessments of future coastal flooding using possibility distributions," Climatic Change, Springer, vol. 155(1), pages 95-109, July.
    18. Robert Kopp & Benjamin Horton & Andrew Kemp & Claudia Tebaldi, 2015. "Past and future sea-level rise along the coast of North Carolina, USA," Climatic Change, Springer, vol. 132(4), pages 693-707, October.
    19. Jasper Verschuur & Dewi Bars & Caroline A. Katsman & Sierd de Vries & Roshanka Ranasinghe & Sybren S. Drijfhout & Stefan G. J. Aarninkhof, 2020. "Implications of ambiguity in Antarctic ice sheet dynamics for future coastal erosion estimates: a probabilistic assessment," Climatic Change, Springer, vol. 162(2), pages 859-876, September.
    20. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:eartha:uvw3s. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://eartharxiv.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.