IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v137y2016i3d10.1007_s10584-016-1664-7.html
   My bibliography  Save this article

Allowances for evolving coastal flood risk under uncertain local sea-level rise

Author

Listed:
  • Maya K. Buchanan

    (Princeton University)

  • Robert E. Kopp

    (Rutgers University)

  • Michael Oppenheimer

    (Princeton University
    Princeton University)

  • Claudia Tebaldi

    (National Center for Atmospheric Research (NCAR))

Abstract

Estimates of future flood hazards made under the assumption of stationary mean sea level are biased low due to sea-level rise (SLR). However, adjustments to flood return levels made assuming fixed increases of sea level are also inadequate when applied to sea level that is rising over time at an uncertain rate. SLR allowances—the height adjustment from historic flood levels that maintain under uncertainty the annual expected probability of flooding—are typically estimated independently of individual decision-makers’ preferences, such as time horizon, risk tolerance, and confidence in SLR projections. We provide a framework of SLR allowances that employs complete probability distributions of local SLR and a range of user-defined flood risk management preferences. Given non-stationary and uncertain sea-level rise, these metrics provide estimates of flood protection heights and offsets for different planning horizons in coastal areas. We illustrate the calculation of various allowance types for a set of long-duration tide gauges along U.S. coastlines.

Suggested Citation

  • Maya K. Buchanan & Robert E. Kopp & Michael Oppenheimer & Claudia Tebaldi, 2016. "Allowances for evolving coastal flood risk under uncertain local sea-level rise," Climatic Change, Springer, vol. 137(3), pages 347-362, August.
  • Handle: RePEc:spr:climat:v:137:y:2016:i:3:d:10.1007_s10584-016-1664-7
    DOI: 10.1007/s10584-016-1664-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-016-1664-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-016-1664-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. L. Bamber & W. P. Aspinall, 2013. "An expert judgement assessment of future sea level rise from the ice sheets," Nature Climate Change, Nature, vol. 3(4), pages 424-427, April.
    2. David McInerney & Robert Lempert & Klaus Keller, 2012. "What are robust strategies in the face of uncertain climate threshold responses?," Climatic Change, Springer, vol. 112(3), pages 547-568, June.
    3. Camilla Froyn, 2005. "Decision Criteria, Scientific Uncertainty, and the Globalwarming Controversy," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 10(2), pages 183-211, April.
    4. Thomas Wahl & Shaleen Jain & Jens Bender & Steven D. Meyers & Mark E. Luther, 2015. "Increasing risk of compound flooding from storm surge and rainfall for major US cities," Nature Climate Change, Nature, vol. 5(12), pages 1093-1097, December.
    5. John Hunter, 2012. "A simple technique for estimating an allowance for uncertain sea-level rise," Climatic Change, Springer, vol. 113(2), pages 239-252, July.
    6. Daniel Ellsberg, 1961. "Risk, Ambiguity, and the Savage Axioms," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 75(4), pages 643-669.
    7. Caroline Katsman & A. Sterl & J. Beersma & H. Brink & J. Church & W. Hazeleger & R. Kopp & D. Kroon & J. Kwadijk & R. Lammersen & J. Lowe & M. Oppenheimer & H. Plag & J. Ridley & H. Storch & D. Vaugha, 2011. "Exploring high-end scenarios for local sea level rise to develop flood protection strategies for a low-lying delta—the Netherlands as an example," Climatic Change, Springer, vol. 109(3), pages 617-645, December.
    8. Ning Lin & Kerry Emanuel & Michael Oppenheimer & Erik Vanmarcke, 2012. "Physically based assessment of hurricane surge threat under climate change," Nature Climate Change, Nature, vol. 2(6), pages 462-467, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wanyun Shao & Hamed Moftakhari & Hamid Moradkhani, 2020. "Comparing public perceptions of sea level rise with scientific projections across five states of the U.S. Gulf Coast region," Climatic Change, Springer, vol. 163(1), pages 317-335, November.
    2. Vicki M. Bier & Yuqun Zhou & Hongru Du, 2020. "Game-theoretic modeling of pre-disaster relocation," The Engineering Economist, Taylor & Francis Journals, vol. 65(2), pages 89-113, April.
    3. Thomas David Pol & Jochen Hinkel, 2019. "Uncertainty representations of mean sea-level change: a telephone game?," Climatic Change, Springer, vol. 152(3), pages 393-411, March.
    4. J. P. Palutikof & D. Rissik & S. Webb & Fahim N. Tonmoy & S. L. Boulter & Anne M. Leitch & A. C. Perez Vidaurre & M. J. Campbell, 2019. "CoastAdapt: an adaptation decision support framework for Australia’s coastal managers," Climatic Change, Springer, vol. 153(4), pages 491-507, April.
    5. Shao Sun & Zunya Wang & Chuanye Hu & Ge Gao, 2021. "Understanding Climate Hazard Patterns and Urban Adaptation Measures in China," Sustainability, MDPI, vol. 13(24), pages 1-12, December.
    6. Ryan L Sriver & Robert J Lempert & Per Wikman-Svahn & Klaus Keller, 2018. "Characterizing uncertain sea-level rise projections to support investment decisions," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-35, February.
    7. Jesse M. Keenan & Jacob T. Bradt, 2020. "Underwaterwriting: from theory to empiricism in regional mortgage markets in the U.S," Climatic Change, Springer, vol. 162(4), pages 2043-2067, October.
    8. Jérémy Rohmer & Gonéri Cozannet & Jean-Charles Manceau, 2019. "Addressing ambiguity in probabilistic assessments of future coastal flooding using possibility distributions," Climatic Change, Springer, vol. 155(1), pages 95-109, July.
    9. D. J. Rasmussen & Scott Kulp & Robert E. Kopp & Michael Oppenheimer & Benjamin H. Strauss, 2022. "Popular extreme sea level metrics can better communicate impacts," Climatic Change, Springer, vol. 170(3), pages 1-17, February.
    10. Robert L. Ceres & Chris E. Forest & Klaus Keller, 2017. "Understanding the detectability of potential changes to the 100-year peak storm surge," Climatic Change, Springer, vol. 145(1), pages 221-235, November.
    11. Scott Kulp & Benjamin H. Strauss, 2017. "Rapid escalation of coastal flood exposure in US municipalities from sea level rise," Climatic Change, Springer, vol. 142(3), pages 477-489, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Le Bars, Dewi, 2018. "Uncertainty in sea level rise projections due to the dependence between contributors," Earth Arxiv uvw3s, Center for Open Science.
    2. Alexander M. R. Bakker & Domitille Louchard & Klaus Keller, 2017. "Sources and implications of deep uncertainties surrounding sea-level projections," Climatic Change, Springer, vol. 140(3), pages 339-347, February.
    3. P. M. Orton & F. R. Conticello & F. Cioffi & T. M. Hall & N. Georgas & U. Lall & A. F. Blumberg & K. MacManus, 2020. "Flood hazard assessment from storm tides, rain and sea level rise for a tidal river estuary," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(2), pages 729-757, June.
    4. Cooke, Roger M., 2014. "Deep and Shallow Uncertainty in Messaging Climate Change," RFF Working Paper Series dp-14-11, Resources for the Future.
    5. Gregory Garner & Patrick Reed & Klaus Keller, 2016. "Climate risk management requires explicit representation of societal trade-offs," Climatic Change, Springer, vol. 134(4), pages 713-723, February.
    6. Hennlock, Magnus, 2009. "Robust Control in Global Warming Management: An Analytical Dynamic Integrated Assessment," RFF Working Paper Series dp-09-19, Resources for the Future.
    7. Gregory Garner & Patrick Reed & Klaus Keller, 2016. "Climate risk management requires explicit representation of societal trade-offs," Climatic Change, Springer, vol. 134(4), pages 713-723, February.
    8. Jérémy Rohmer & Gonéri Cozannet & Jean-Charles Manceau, 2019. "Addressing ambiguity in probabilistic assessments of future coastal flooding using possibility distributions," Climatic Change, Springer, vol. 155(1), pages 95-109, July.
    9. David McInerney & Robert Lempert & Klaus Keller, 2012. "What are robust strategies in the face of uncertain climate threshold responses?," Climatic Change, Springer, vol. 112(3), pages 547-568, June.
    10. Tina Dura & Andra J. Garner & Robert Weiss & Robert E. Kopp & Simon E. Engelhart & Robert C. Witter & Richard W. Briggs & Charles S. Mueller & Alan R. Nelson & Benjamin P. Horton, 2021. "Changing impacts of Alaska-Aleutian subduction zone tsunamis in California under future sea-level rise," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    11. Christina Leuker & Thorsten Pachur & Ralph Hertwig & Timothy J. Pleskac, 2019. "Do people exploit risk–reward structures to simplify information processing in risky choice?," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 5(1), pages 76-94, August.
    12. Anne Corcos & François Pannequin & Sacha Bourgeois-Gironde, 2012. "Aversions to Trust," Recherches économiques de Louvain, De Boeck Université, vol. 78(3), pages 115-134.
    13. Simon Levin & Anastasios Xepapadeas, 2021. "On the Coevolution of Economic and Ecological Systems," Annual Review of Resource Economics, Annual Reviews, vol. 13(1), pages 355-377, October.
    14. Simona Fabrizi & Steffen Lippert & Addison Pan & Matthew Ryan, 2022. "A theory of unanimous jury voting with an ambiguous likelihood," Theory and Decision, Springer, vol. 93(3), pages 399-425, October.
    15. Kiyohiko G. Nishimura & Hiroyuki Ozaki, 2001. "Search under the Knightian Uncertainty," CIRJE F-Series CIRJE-F-112, CIRJE, Faculty of Economics, University of Tokyo.
    16. Liu, Hui-hui & Song, Yao-yao & Liu, Xiao-xiao & Yang, Guo-liang, 2020. "Aggregating the DEA prospect cross-efficiency with an application to state key laboratories in China," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    17. Chateauneuf, Alain & Eichberger, Jurgen & Grant, Simon, 2007. "Choice under uncertainty with the best and worst in mind: Neo-additive capacities," Journal of Economic Theory, Elsevier, vol. 137(1), pages 538-567, November.
    18. André Lapied & Thomas Rongiconi, 2013. "Ambiguity as a Source of Temptation: Modeling Unstable Beliefs," Working Papers halshs-00797631, HAL.
    19. Chorvat, Terrence, 2006. "Taxing utility," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 35(1), pages 1-16, February.
    20. Attanasi, Giuseppe Marco & Montesano, Aldo, 2010. "The Price for Information about Probabilities and its Relation with Capacities," TSE Working Papers 10-193, Toulouse School of Economics (TSE).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:137:y:2016:i:3:d:10.1007_s10584-016-1664-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.