IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v178y2025i4d10.1007_s10584-025-03927-2.html
   My bibliography  Save this article

Quantifying climate change risk through natural hazard losses to inform adaptation action

Author

Listed:
  • Emily Mongold

    (Stanford University)

  • Jack W. Baker

    (Stanford University)

Abstract

Climate change is expected to increase the frequency and severity of many natural hazards. In particular, coastal communities are often exposed to multiple hazards, exacerbated by climate change. We present a methodology to quantify the increase in multi-hazard risk due to climate change. The methodology includes a probabilistic description of independent hazard pathways, defined as sets of individual and cascading hazards that are statistically independent, run for multiple levels of climate change impact. We also quantify the risk reduction from adaptation actions. The approach integrates probabilistic hazard analysis and loss assessment. With this approach, we identify the hazards contributing most to risk under multiple amounts of climate change. This methodology is applied to a case study of residential housing in Alameda, California, USA, considering how sea level rise impacts multiple hazards: earthquakes, coastal flooding, and tsunamis. For the case study location, we identify that the highest annualized risk shifts from earthquakes to coastal flooding as sea levels rise. We assess how different adaptation actions would reduce the risk today and under sea level rise, highlighting the need to consider frequent and infrequent losses.

Suggested Citation

  • Emily Mongold & Jack W. Baker, 2025. "Quantifying climate change risk through natural hazard losses to inform adaptation action," Climatic Change, Springer, vol. 178(4), pages 1-25, April.
  • Handle: RePEc:spr:climat:v:178:y:2025:i:4:d:10.1007_s10584-025-03927-2
    DOI: 10.1007/s10584-025-03927-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-025-03927-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-025-03927-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thomas Prime & Jennifer M Brown & Andrew J Plater, 2015. "Physical and Economic Impacts of Sea-Level Rise and Low Probability Flooding Events on Coastal Communities," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-28, February.
    2. Hyoungsu Park & Daniel T. Cox & Andre R. Barbosa, 2018. "Probabilistic Tsunami Hazard Assessment (PTHA) for resilience assessment of a coastal community," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(3), pages 1117-1139, December.
    3. Tina Dura & Andra J. Garner & Robert Weiss & Robert E. Kopp & Simon E. Engelhart & Robert C. Witter & Richard W. Briggs & Charles S. Mueller & Alan R. Nelson & Benjamin P. Horton, 2021. "Changing impacts of Alaska-Aleutian subduction zone tsunamis in California under future sea-level rise," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    4. Wouter K. Smits & Emmanuel M. N. A. N. Attoh & Fulco Ludwig, 2024. "Flood risk assessment and adaptation under changing climate for the agricultural system in the Ghanaian White Volta Basin," Climatic Change, Springer, vol. 177(3), pages 1-24, March.
    5. Christine Shepard & Vera Agostini & Ben Gilmer & Tashya Allen & Jeff Stone & William Brooks & Michael Beck, 2012. "Assessing future risk: quantifying the effects of sea level rise on storm surge risk for the southern shores of Long Island, New York," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(2), pages 727-745, January.
    6. Delavane B. Diaz, 2016. "Estimating global damages from sea level rise with the Coastal Impact and Adaptation Model (CIAM)," Climatic Change, Springer, vol. 137(1), pages 143-156, July.
    7. K. M. Befus & P. L. Barnard & D. J. Hoover & J. A. Finzi Hart & C. I. Voss, 2020. "Increasing threat of coastal groundwater hazards from sea-level rise in California," Nature Climate Change, Nature, vol. 10(10), pages 946-952, October.
    8. Maya K. Buchanan & Robert E. Kopp & Michael Oppenheimer & Claudia Tebaldi, 2016. "Allowances for evolving coastal flood risk under uncertain local sea-level rise," Climatic Change, Springer, vol. 137(3), pages 347-362, August.
    9. Shinyoung Kwag & Jeong Gon Ha & Min Kyu Kim & Jung Han Kim, 2019. "Development of Efficient External Multi-Hazard Risk Quantification Methodology for Nuclear Facilities," Energies, MDPI, vol. 12(20), pages 1-25, October.
    10. Daniel Felsenstein & Michal Lichter, 2014. "Social and economic vulnerability of coastal communities to sea-level rise and extreme flooding," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 463-491, March.
    11. Miyuki Hino & Christopher B. Field & Katharine J. Mach, 2017. "Managed retreat as a response to natural hazard risk," Nature Climate Change, Nature, vol. 7(5), pages 364-370, May.
    12. Anawat Suppasri & Erick Mas & Ingrid Charvet & Rashmin Gunasekera & Kentaro Imai & Yo Fukutani & Yoshi Abe & Fumihiko Imamura, 2013. "Building damage characteristics based on surveyed data and fragility curves of the 2011 Great East Japan tsunami," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 319-341, March.
    13. Jacopo Selva, 2013. "Long-term multi-risk assessment: statistical treatment of interaction among risks," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 701-722, June.
    14. Oliver E. J. Wing & Nicholas Pinter & Paul D. Bates & Carolyn Kousky, 2020. "New insights into US flood vulnerability revealed from flood insurance big data," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    15. Mir Mousavi & Jennifer Irish & Ashley Frey & Francisco Olivera & Billy Edge, 2011. "Global warming and hurricanes: the potential impact of hurricane intensification and sea level rise on coastal flooding," Climatic Change, Springer, vol. 104(3), pages 575-597, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ming Li & Fan Zhang & Samuel Barnes & Xiaohong Wang, 2020. "Assessing storm surge impacts on coastal inundation due to climate change: case studies of Baltimore and Dorchester County in Maryland," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 2561-2588, September.
    2. Gabriel Bachner & Daniel Lincke & Jochen Hinkel, 2022. "The macroeconomic effects of adapting to high-end sea-level rise via protection and migration," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Makoto Tamura & Kohei Imamura & Naoko Kumano & Hiromune Yokoki, 2024. "Assessing the effectiveness of adaptation against sea level rise in Japanese coastal areas: protection or relocation?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(9), pages 23561-23577, September.
    4. Vicki M. Bier & Yuqun Zhou & Hongru Du, 2020. "Game-theoretic modeling of pre-disaster relocation," The Engineering Economist, Taylor & Francis Journals, vol. 65(2), pages 89-113, April.
    5. Makoto Tamura & Naoko Kumano & Mizuki Yotsukuri & Hiromune Yokoki, 2019. "Global assessment of the effectiveness of adaptation in coastal areas based on RCP/SSP scenarios," Climatic Change, Springer, vol. 152(3), pages 363-377, March.
    6. Thomas David Pol & Jochen Hinkel, 2019. "Uncertainty representations of mean sea-level change: a telephone game?," Climatic Change, Springer, vol. 152(3), pages 393-411, March.
    7. Samuel Asumadu Sarkodie & Maruf Yakubu Ahmed & Phebe Asantewaa Owusu, 2022. "Global adaptation readiness and income mitigate sectoral climate change vulnerabilities," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-17, December.
    8. Kai Greenlees & Randolph Cornelius, 2021. "The promise of panarchy in managed retreat: converging psychological perspectives and complex adaptive systems theory," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 11(3), pages 503-510, September.
    9. Hashida, Yukiko & Dundas, Steven J., 2023. "The effects of a voluntary property buyout and acquisition program on coastal housing markets: Evidence from New York," Journal of Environmental Economics and Management, Elsevier, vol. 121(C).
    10. Merrick, James H. & Weyant, John P., 2019. "On choosing the resolution of normative models," European Journal of Operational Research, Elsevier, vol. 279(2), pages 511-523.
    11. Shaieree Cottar & Brent Doberstein & Daniel Henstra & Johanna Wandel, 2021. "Evaluating property buyouts and disaster recovery assistance (Rebuild) options in Canada: A comparative analysis of Constance Bay, Ontario and Pointe Gatineau, Quebec," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 201-220, October.
    12. Jhantu Dey & Sayani Mazumder, 2023. "Development of an integrated coastal vulnerability index and its application to the low-lying Mandarmani–Dadanpatrabar coastal sector, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3243-3273, April.
    13. Johnson, Caroline A. & Flage, Roger & Guikema, Seth D., 2021. "Feasibility study of PRA for critical infrastructure risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    14. Tubridy, Fiadh & Lennon, Mick & Scott, Mark, 2022. "Managed retreat and coastal climate change adaptation: The environmental justice implications and value of a coproduction approach," Land Use Policy, Elsevier, vol. 114(C).
    15. Rennels, Lisa & Rennert, Kevin & Errickson, Frank & Anthoff, David & Wingenroth, Jordan & Prest, Brian C., 2024. "Accounting for Biodiversity Loss Raises the Social Cost of CO2," RFF Working Paper Series 24-23, Resources for the Future.
    16. Dylan Sanderson & Sabarethinam Kameshwar & Nathanael Rosenheim & Daniel Cox, 2021. "Deaggregation of multi-hazard damages, losses, risks, and connectivity: an application to the joint seismic-tsunami hazard at Seaside, Oregon," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1821-1847, November.
    17. Ahmad Taki & Viet Ha Xuan Doan, 2022. "A New Framework for Sustainable Resilient Houses on the Coastal Areas of Khanh Hoa, Vietnam," Sustainability, MDPI, vol. 14(13), pages 1-31, June.
    18. Nikita Jain & Deepali Virmani & Ajith Abraham, 2021. "Tsunami in the last 15 years: a bibliometric analysis with a detailed overview and future directions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 139-172, March.
    19. Shao Sun & Zunya Wang & Chuanye Hu & Ge Gao, 2021. "Understanding Climate Hazard Patterns and Urban Adaptation Measures in China," Sustainability, MDPI, vol. 13(24), pages 1-12, December.
    20. Meri Davlasheridze & Qin Fan & Wesley Highfield & Jiaochen Liang, 2021. "Economic impacts of storm surge events: examining state and national ripple effects," Climatic Change, Springer, vol. 166(1), pages 1-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:178:y:2025:i:4:d:10.1007_s10584-025-03927-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.