IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i20p3925-d277130.html
   My bibliography  Save this article

Development of Efficient External Multi-Hazard Risk Quantification Methodology for Nuclear Facilities

Author

Listed:
  • Shinyoung Kwag

    (Department of Civil and Environmental Engineering, Hanbat National University, Daejeon 34158, Korea)

  • Jeong Gon Ha

    (Mechanical and Structural Safety Research Division, Korea Atomic Energy Research Institute, Daejeon 34057, Korea)

  • Min Kyu Kim

    (Mechanical and Structural Safety Research Division, Korea Atomic Energy Research Institute, Daejeon 34057, Korea)

  • Jung Han Kim

    (Department of Civil Engineering, Pusan National University, Busan 46241, Korea)

Abstract

Probabilistic safety assessment (PSA) of nuclear facilities on external multi-hazards has become a major issue after the Fukushima accident in 2011. However, the existing external hazard PSA methodology is for single hazard events and cannot cover the impact of multi-hazards. Therefore, this study proposes a methodology for quantifying multi-hazard risks for nuclear energy plants. Specifically, we developed an efficient multi-hazard PSA methodology based on the probability distribution-based Boolean algebraic approach and sampling-based method, which are currently single-hazard PSA methodologies. The limitations of the probability distribution-based Boolean algebraic approach not being able to handle partial dependencies between the components are solved through this sampling-based method. In addition, we devised an algorithm that was more efficient than the existing algorithm for improving the limits of the current sampling-based method, as it required a significant computational time. The proposed methodology was applied from simple examples to single- and multi-hazard PSA examples of actual nuclear power plants. The results showed that the proposed methodology was verified in terms of accuracy and efficiency perspectives. Regarding the sampling-based method, it was confirmed that the proposed algorithm yielded fragility and risk results that have similar degrees of accuracy, even though it extracted a smaller number of samples than the existing algorithm.

Suggested Citation

  • Shinyoung Kwag & Jeong Gon Ha & Min Kyu Kim & Jung Han Kim, 2019. "Development of Efficient External Multi-Hazard Risk Quantification Methodology for Nuclear Facilities," Energies, MDPI, vol. 12(20), pages 1-25, October.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:20:p:3925-:d:277130
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/20/3925/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/20/3925/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Salzano, Ernesto & Garcia Agreda, Anita & Di Carluccio, Antonio & Fabbrocino, Giovanni, 2009. "Risk assessment and early warning systems for industrial facilities in seismic zones," Reliability Engineering and System Safety, Elsevier, vol. 94(10), pages 1577-1584.
    2. Saurabh Prabhu & Mohammad Javanbarg & Marc Lehmann & Sez Atamturktur, 2019. "Multi-peril risk assessment for business downtime of industrial facilities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(3), pages 1327-1356, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eujeong Choi & Shinyoung Kwag & Jeong-Gon Ha & Daegi Hahm, 2021. "Development of a Two-Stage DQFM to Improve Efficiency of Single- and Multi-Hazard Risk Quantification for Nuclear Facilities," Energies, MDPI, vol. 14(4), pages 1-21, February.
    2. Kwag, Shinyoung & Choi, Eujeong & Eem, Seunghyun & Ha, Jeong-Gon & Hahm, Daegi, 2021. "Toward improvement of sampling-based seismic probabilistic safety assessment method for nuclear facilities using composite distribution and adaptive discretization," Reliability Engineering and System Safety, Elsevier, vol. 215(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khakzad, Nima & Van Gelder, Pieter, 2018. "Vulnerability of industrial plants to flood-induced natechs: A Bayesian network approach," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 403-411.
    2. Marzo, E. & Busini, V. & Rota, R., 2015. "Definition of a short-cut methodology for assessing the vulnerability of a territory in natural–technological risk estimation," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 92-97.
    3. Yang, Yunfeng & Chen, Guohua & Reniers, Genserik, 2020. "Vulnerability assessment of atmospheric storage tanks to floods based on logistic regression," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    4. Necci, Amos & Argenti, Francesca & Landucci, Gabriele & Cozzani, Valerio, 2014. "Accident scenarios triggered by lightning strike on atmospheric storage tanks," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 30-46.
    5. Eujeong Choi & Shinyoung Kwag & Jeong-Gon Ha & Daegi Hahm, 2021. "Development of a Two-Stage DQFM to Improve Efficiency of Single- and Multi-Hazard Risk Quantification for Nuclear Facilities," Energies, MDPI, vol. 14(4), pages 1-21, February.
    6. Olivar, Oscar J. Ramírez & Mayorga, Santiago Zuluaga & Giraldo, Felipe Muñoz & Sánchez-Silva, Mauricio & Pinelli, Jean-Paul & Salzano, Ernesto, 2020. "The effects of extreme winds on atmospheric storage tanks," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    7. Misuri, Alessio & Ricci, Federica & Sorichetti, Riccardo & Cozzani, Valerio, 2023. "The Effect of Safety Barrier Degradation on the Severity of Primary Natech Scenarios," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    8. Misuri, Alessio & Landucci, Gabriele & Cozzani, Valerio, 2021. "Assessment of risk modification due to safety barrier performance degradation in Natech events," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    9. Landucci, Gabriele & Necci, Amos & Antonioni, Giacomo & Tugnoli, Alessandro & Cozzani, Valerio, 2014. "Release of hazardous substances in flood events: Damage model for horizontal cylindrical vessels," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 125-145.
    10. Zuluaga Mayorga, Santiago & Sánchez-Silva, Mauricio & Ramírez Olivar, Oscar J. & Muñoz Giraldo, Felipe, 2019. "Development of parametric fragility curves for storage tanks: A Natech approach," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 1-10.
    11. Yunfeng Yang & Guohua Chen & Yuanfei Zhao, 2023. "A Quantitative Framework for Propagation Paths of Natech Domino Effects in Chemical Industrial Parks: Part II—Risk Assessment and Mitigation System," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
    12. Milazzo, Maria Francesca & Ancione, Giuseppa & Salzano, Ernesto & Maschio, Giuseppe, 2013. "Risks associated with volcanic ash fallout from Mt.Etna with reference to industrial filtration systems," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 106-110.
    13. Landucci, Gabriele & Antonioni, Giacomo & Tugnoli, Alessandro & Cozzani, Valerio, 2012. "Release of hazardous substances in flood events: Damage model for atmospheric storage tanks," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 200-216.
    14. Antonioni, Giacomo & Landucci, Gabriele & Necci, Amos & Gheorghiu, Diana & Cozzani, Valerio, 2015. "Quantitative assessment of risk due to NaTech scenarios caused by floods," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 334-345.
    15. Necci, Amos & Antonioni, Giacomo & Bonvicini, Sarah & Cozzani, Valerio, 2016. "Quantitative assessment of risk due to major accidents triggered by lightning," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 60-72.
    16. Maria Vittoria Gargiulo & Alexander Garcia & Andrea Paulillo & Ortensia Amoroso & Ernesto Salzano & Paolo Capuano, 2021. "An Integrated Approach to Risk and Impacts of Geo-Resources Exploration and Exploitation," Energies, MDPI, vol. 14(14), pages 1-31, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:20:p:3925-:d:277130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.