IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0117030.html
   My bibliography  Save this article

Physical and Economic Impacts of Sea-Level Rise and Low Probability Flooding Events on Coastal Communities

Author

Listed:
  • Thomas Prime
  • Jennifer M Brown
  • Andrew J Plater

Abstract

Conventionally flood mapping typically includes only a static water level (e.g. peak of a storm tide) in coastal flood inundation events. Additional factors become increasingly important when increased water-level thresholds are met during the combination of a storm tide and increased mean sea level. This research incorporates factors such as wave overtopping and river flow in a range of flood inundation scenarios of future sea-level projections for a UK case study of Fleetwood, northwest England. With increasing mean sea level it is shown that wave overtopping and river forcing have an important bearing on the cost of coastal flood events. The method presented converts inundation maps into monetary cost. This research demonstrates that under scenarios of joint extreme surge-wave-river events the cost of flooding can be increased by up to a factor of 8 compared with an increase in extent of up to a factor of 3 relative to “surge alone” event. This is due to different areas being exposed to different flood hazards and areas with common hazard where flood waters combine non-linearly. This shows that relying simply on flood extent and volume can under-predict the actual economic impact felt by a coastal community. Additionally, the scenario inundation depths have been presented as “brick course” maps, which represent a new way of interpreting flood maps. This is primarily aimed at stakeholders to increase levels of engagement within the coastal community.

Suggested Citation

  • Thomas Prime & Jennifer M Brown & Andrew J Plater, 2015. "Physical and Economic Impacts of Sea-Level Rise and Low Probability Flooding Events on Coastal Communities," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-28, February.
  • Handle: RePEc:plo:pone00:0117030
    DOI: 10.1371/journal.pone.0117030
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0117030
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0117030&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0117030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. K. Mcinnes & K. Walsh & G. Hubbert & T. Beer, 2003. "Impact of Sea-level Rise and Storm Surges on a Coastal Community," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 30(2), pages 187-207, October.
    2. Yongqiang Zong & Michael Tooley, 2003. "A Historical Record of Coastal Floods in Britain: Frequencies and Associated Storm Tracks," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 29(1), pages 13-36, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roger Cremades & Hermine Mitter & Nicu Constantin Tudose & Anabel Sanchez-Plaza & Anil Graves & Annelies Broekman & Steffen Bender & Carlo Giupponi & Phoebe Koundouri & Muhamad Bahri & Sorin Cheval & , 2019. "Ten principles to integrate the water-energy-land nexus with climate services for co-producing local and regional integrated assessments," DEOS Working Papers 1915, Athens University of Economics and Business.
    2. Charlotte Lyddon & Jenny M Brown & Nicoletta Leonardi & Andrew J Plater, 2018. "Uncertainty in estuarine extreme water level predictions due to surge-tide interaction," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-17, October.
    3. Candace Berrett & William F. Christensen & Stephan R. Sain & Nathan Sandholtz & David W. Coats & Claudia Tebaldi & Hedibert F. Lopes, 2020. "Modeling sea‐level processes on the U.S. Atlantic Coast," Environmetrics, John Wiley & Sons, Ltd., vol. 31(4), June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andre Zerger & Stephen Wealands, 2004. "Beyond Modelling: Linking Models with GIS for Flood Risk Management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 33(2), pages 191-208, October.
    2. Jun Wang & Zhenlou Chen & Shiyuan Xu & Beibei Hu, 2013. "Medium-scale natural disaster risk scenario analysis: a case study of Pingyang County, Wenzhou, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 1205-1220, March.
    3. Dawson, David & Shaw, Jon & Roland Gehrels, W., 2016. "Sea-level rise impacts on transport infrastructure: The notorious case of the coastal railway line at Dawlish, England," Journal of Transport Geography, Elsevier, vol. 51(C), pages 97-109.
    4. Leo Dobes & Gabriela Scheufele & Jeff Bennett, 2015. "Post-cyclone emergency services: a cost–benefit analysis for Cairns, Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 869-886, January.
    5. Déborah Idier & Jérémy Rohmer & Rodrigo Pedreros & Sylvestre Roy & Jérome Lambert & Jessie Louisor & Gonéri Cozannet & Erwan Cornec, 2020. "Coastal flood: a composite method for past events characterisation providing insights in past, present and future hazards—joining historical, statistical and modelling approaches," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(2), pages 465-501, March.
    6. K. McInnes & I. Macadam & G. Hubbert & J. O’Grady, 2009. "A modelling approach for estimating the frequency of sea level extremes and the impact of climate change in southeast Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 51(1), pages 115-137, October.
    7. Ming Li & Fan Zhang & Samuel Barnes & Xiaohong Wang, 2020. "Assessing storm surge impacts on coastal inundation due to climate change: case studies of Baltimore and Dorchester County in Maryland," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 2561-2588, September.
    8. Yumei Ding & Hao Wei, 2017. "Modeling the impact of land reclamation on storm surges in Bohai Sea, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(1), pages 559-573, January.
    9. Kevin Walsh & Christopher J. White & Kathleen McInnes & John Holmes & Sandra Schuster & Harald Richter & Jason P. Evans & Alejandro Luca & Robert A. Warren, 2016. "Natural hazards in Australia: storms, wind and hail," Climatic Change, Springer, vol. 139(1), pages 55-67, November.
    10. Tengjiao Guo & Guosheng Li, 2020. "Study on methods to identify the impact factors of economic losses due to typhoon storm surge based on confirmatory factor analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(2), pages 515-534, January.
    11. Keqi Zhang & Yuepeng Li & Huiqing Liu & Hongzhou Xu & Jian Shen, 2013. "Comparison of three methods for estimating the sea level rise effect on storm surge flooding," Climatic Change, Springer, vol. 118(2), pages 487-500, May.
    12. Lisa Kleinosky & Brent Yarnal & Ann Fisher, 2007. "Vulnerability of Hampton Roads, Virginia to Storm-Surge Flooding and Sea-Level Rise," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 40(1), pages 43-70, January.
    13. Bin Pei & Weichiang Pang & Firat Testik & Nadarajah Ravichandran & Fangqian Liu, 2014. "Mapping joint hurricane wind and surge hazards for Charleston, South Carolina," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 375-403, November.
    14. Sang Oh & Il-Ju Moon, 2013. "Typhoon and storm surge intensity changes in a warming climate around the Korean Peninsula," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(3), pages 1405-1429, April.
    15. Geraldine Li, 2009. "Tropical cyclone risk perceptions in Darwin, Australia: a comparison of different residential groups," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 48(3), pages 365-382, March.
    16. Shama E. Haque, 2023. "The Effects of Climate Variability on Florida’s Major Water Resources," Sustainability, MDPI, vol. 15(14), pages 1-28, July.
    17. Charls Antony & Sabique Langodan & Hari Prasad Dasari & Omar Knio & Ibrahim Hoteit, 2021. "Extreme water levels along the central Red Sea coast of Saudi Arabia: processes and frequency analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 1797-1814, January.
    18. Kuo Li & Guo Li, 2013. "Risk assessment on storm surges in the coastal area of Guangdong Province," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 1129-1139, September.
    19. Susmita Datta Peu & Arnob Das & Md. Sanowar Hossain & Md. Abdul Mannan Akanda & Md. Muzaffer Hosen Akanda & Mahbubur Rahman & Md. Naim Miah & Barun K. Das & Abu Reza Md. Towfiqul Islam & Mostafa M. Sa, 2023. "A Comprehensive Review on Recent Advancements in Absorption-Based Post Combustion Carbon Capture Technologies to Obtain a Sustainable Energy Sector with Clean Environment," Sustainability, MDPI, vol. 15(7), pages 1-33, March.
    20. Nanda Khoirunisa & Cheng-Yu Ku & Chih-Yu Liu, 2021. "A GIS-Based Artificial Neural Network Model for Flood Susceptibility Assessment," IJERPH, MDPI, vol. 18(3), pages 1-20, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0117030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.