IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i7p5827-d1108933.html
   My bibliography  Save this article

A Comprehensive Review on Recent Advancements in Absorption-Based Post Combustion Carbon Capture Technologies to Obtain a Sustainable Energy Sector with Clean Environment

Author

Listed:
  • Susmita Datta Peu

    (Department of Agriculture, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh)

  • Arnob Das

    (Department of Mechanical Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204, Bangladesh)

  • Md. Sanowar Hossain

    (Department of Mechanical Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204, Bangladesh)

  • Md. Abdul Mannan Akanda

    (School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI 48859, USA)

  • Md. Muzaffer Hosen Akanda

    (Department of Manufacturing Engineering, Texas State University, Waco, TX 78666, USA)

  • Mahbubur Rahman

    (Ingram School of Engineering, Texas State University, San Marcos, TX 78666, USA)

  • Md. Naim Miah

    (Design Engineer, Regal Rexnord Corporation, Beloit, WI 53511, USA)

  • Barun K. Das

    (Department of Mechanical Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204, Bangladesh)

  • Abu Reza Md. Towfiqul Islam

    (Department of disaster management, Begum Rokeya University, Rangpur 5400, Bangladesh)

  • Mostafa M. Salah

    (Electrical Engineering Department, Future University in Egypt, Cairo 11835, Egypt)

Abstract

CO 2 capture, use, and storage have been identified as significant strategies for reducing greenhouse gas emissions induced by the usage of fossil fuels. The current review focuses on the concepts of post-combustion capture technologies based on absorption mechanisms. Among all other developed technologies, researchers have proposed absorption as the most mature carbon capture technology for industrial-scale application. Absorption-based carbon capture can be classified into chemical and physical absorption, and researchers have developed different solvents and absorbent materials to investigate their performance in CO 2 capture. This paper comprehensively reviewed these established solvents and absorbents with their performance parameters in the CO 2 absorption approach. Besides the improvement in widely applied absorbents such as amine-based absorbents, recently, researchers have been working to develop some advanced nanomaterials such as nanofluids and nano-emulsions. This review focuses on the application of such absorption mechanisms that can contribute to capturing CO 2 in a compact, environment-friendly, and safe way. This paper also provides future research direction for further development in absorption-based CO 2 capture.

Suggested Citation

  • Susmita Datta Peu & Arnob Das & Md. Sanowar Hossain & Md. Abdul Mannan Akanda & Md. Muzaffer Hosen Akanda & Mahbubur Rahman & Md. Naim Miah & Barun K. Das & Abu Reza Md. Towfiqul Islam & Mostafa M. Sa, 2023. "A Comprehensive Review on Recent Advancements in Absorption-Based Post Combustion Carbon Capture Technologies to Obtain a Sustainable Energy Sector with Clean Environment," Sustainability, MDPI, vol. 15(7), pages 1-33, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:5827-:d:1108933
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/7/5827/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/7/5827/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bosetti, Valentina & Carraro, Carlo & Massetti, Emanuele & Tavoni, Massimo, 2008. "International energy R&D spillovers and the economics of greenhouse gas atmospheric stabilization," Energy Economics, Elsevier, vol. 30(6), pages 2912-2929, November.
    2. Jiang, Bingbing & Wang, Xianfeng & Gray, McMahan L. & Duan, Yuhua & Luebke, David & Li, Bingyun, 2013. "Development of amino acid and amino acid-complex based solid sorbents for CO2 capture," Applied Energy, Elsevier, vol. 109(C), pages 112-118.
    3. Zhang, Zhien & Li, Yifu & Zhang, Wenxiang & Wang, Junlei & Soltanian, Mohamad Reza & Olabi, Abdul Ghani, 2018. "Effectiveness of amino acid salt solutions in capturing CO2: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 179-188.
    4. Olajire, Abass A., 2010. "CO2 capture and separation technologies for end-of-pipe applications – A review," Energy, Elsevier, vol. 35(6), pages 2610-2628.
    5. Lee, Jae Won & Kang, Yong Tae, 2013. "CO2 absorption enhancement by Al2O3 nanoparticles in NaCl aqueous solution," Energy, Elsevier, vol. 53(C), pages 206-211.
    6. Hornbostel, K. & Nguyen, D. & Bourcier, W. & Knipe, J. & Worthington, M. & McCoy, S. & Stolaroff, J., 2019. "Packed and fluidized bed absorber modeling for carbon capture with micro-encapsulated sodium carbonate solution," Applied Energy, Elsevier, vol. 235(C), pages 1192-1204.
    7. Zhang, Shihan & Shen, Yao & Wang, Lidong & Chen, Jianmeng & Lu, Yongqi, 2019. "Phase change solvents for post-combustion CO2 capture: Principle, advances, and challenges," Applied Energy, Elsevier, vol. 239(C), pages 876-897.
    8. K. Mcinnes & K. Walsh & G. Hubbert & T. Beer, 2003. "Impact of Sea-level Rise and Storm Surges on a Coastal Community," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 30(2), pages 187-207, October.
    9. Zhang, Xiaowen & Zhang, Xin & Liu, Helei & Li, Wensheng & Xiao, Min & Gao, Hongxia & Liang, Zhiwu, 2017. "Reduction of energy requirement of CO2 desorption from a rich CO2-loaded MEA solution by using solid acid catalysts," Applied Energy, Elsevier, vol. 202(C), pages 673-684.
    10. Don Grant & Kelly Bergstrand & Katrina Running, 2014. "Effectiveness of US state policies in reducing CO2 emissions from power plants," Nature Climate Change, Nature, vol. 4(11), pages 977-982, November.
    11. Zhao, Wenying & Sprachmann, Gerald & Li, Zhenshan & Cai, Ningsheng & Zhang, Xiaohui, 2013. "Effect of K2CO3·1.5H2O on the regeneration energy consumption of potassium-based sorbents for CO2 capture," Applied Energy, Elsevier, vol. 112(C), pages 381-387.
    12. Arnob Das & Susmita Datta Peu & Md. Abdul Mannan Akanda & Abu Reza Md. Towfiqul Islam, 2023. "Peer-to-Peer Energy Trading Pricing Mechanisms: Towards a Comprehensive Analysis of Energy and Network Service Pricing (NSP) Mechanisms to Get Sustainable Enviro-Economical Energy Sector," Energies, MDPI, vol. 16(5), pages 1-27, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tengku Nur Adibah Tengku Hassan & Azmi Mohd Shariff & Nor Faiqa Abd Aziz & Nur Farhana Ajua Mustafa & Lian See Tan & Hairul Nazirah Abdul Halim & Mustakimah Mohamed & Heri Hermansyah, 2023. "Aqueous Potassium Salt of L-Cysteine as Potential CO 2 Removal Solvent: An Investigation on Physicochemical Properties and CO 2 Loading Capacity," Sustainability, MDPI, vol. 15(15), pages 1-23, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alivand, Masood S. & Mazaheri, Omid & Wu, Yue & Stevens, Geoffrey W. & Scholes, Colin A. & Mumford, Kathryn A., 2019. "Development of aqueous-based phase change amino acid solvents for energy-efficient CO2 capture: The role of antisolvent," Applied Energy, Elsevier, vol. 256(C).
    2. Kim, Seonggon & Ko, Yunmo & Lee, Geun Jeong & Lee, Jae Won & Xu, Ronghuan & Ahn, Hyungseop & Kang, Yong Tae, 2023. "Sustainable energy harvesting from post-combustion CO2 capture using amine-functionalized solvents," Energy, Elsevier, vol. 267(C).
    3. Liu, Xuebing & Niu, Xiaowei & Zhan, Guoxiong & Xing, Lei & Huang, Zhoulan & Yuan, Bingling & Peng, Yue & Chen, Zhen & Li, Junhua, 2024. "Dynamic phase-splitting behaviour of biphasic solvent for carbon capture in a novel annular phase separator," Applied Energy, Elsevier, vol. 360(C).
    4. Lee, Jae Won & Kim, Seonggon & Torres Pineda, Israel & Kang, Yong Tae, 2021. "Review of nanoabsorbents for capture enhancement of CO2 and its industrial applications with design criteria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    5. Guo, Yafei & Zhao, Chuanwen & Li, Changhai & Lu, Shouxiang, 2014. "Application of PEI–K2CO3/AC for capturing CO2 from flue gas after combustion," Applied Energy, Elsevier, vol. 129(C), pages 17-24.
    6. Wang, Rujie & Liu, Shanshan & Wang, Lidong & Li, Qiangwei & Zhang, Shihan & Chen, Bo & Jiang, Lei & Zhang, Yifeng, 2019. "Superior energy-saving splitter in monoethanolamine-based biphasic solvents for CO2 capture from coal-fired flue gas," Applied Energy, Elsevier, vol. 242(C), pages 302-310.
    7. Yoro, Kelvin O. & Daramola, Michael O. & Sekoai, Patrick T. & Armah, Edward K. & Wilson, Uwemedimo N., 2021. "Advances and emerging techniques for energy recovery during absorptive CO2 capture: A review of process and non-process integration-based strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    8. Meng, Fanzhi & Meng, Yuan & Ju, Tongyao & Han, Siyu & Lin, Li & Jiang, Jianguo, 2022. "Research progress of aqueous amine solution for CO2 capture: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    9. Kobayashi, Makoto & Akiho, Hiroyuki & Nakao, Yoshinobu, 2015. "Performance evaluation of porous sodium aluminate sorbent for halide removal process in oxy-fuel IGCC power generation plant," Energy, Elsevier, vol. 92(P3), pages 320-327.
    10. Amaris, Carlos & Bourouis, Mahmoud & Vallès, Manel, 2014. "Passive intensification of the ammonia absorption process with NH3/LiNO3 using carbon nanotubes and advanced surfaces in a tubular bubble absorber," Energy, Elsevier, vol. 68(C), pages 519-528.
    11. Bosetti, Valentina & Carraro, Carlo & Duval, Romain & Tavoni, Massimo, 2011. "What should we expect from innovation? A model-based assessment of the environmental and mitigation cost implications of climate-related R&D," Energy Economics, Elsevier, vol. 33(6), pages 1313-1320.
    12. Andre Zerger & Stephen Wealands, 2004. "Beyond Modelling: Linking Models with GIS for Flood Risk Management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 33(2), pages 191-208, October.
    13. Awaworyi Churchill, Sefa & Inekwe, John & Smyth, Russell & Zhang, Xibin, 2019. "R&D intensity and carbon emissions in the G7: 1870–2014," Energy Economics, Elsevier, vol. 80(C), pages 30-37.
    14. Emanuele Massetti & Lea Nicita, 2010. "The Optimal Climate Policy Portfolio when Knowledge Spills across Sectors," CESifo Working Paper Series 2988, CESifo.
    15. Bretschger, Lucas & Lechthaler, Filippo & Rausch, Sebastian & Zhang, Lin, 2017. "Knowledge diffusion, endogenous growth, and the costs of global climate policy," European Economic Review, Elsevier, vol. 93(C), pages 47-72.
    16. Cheng, Chin-hung & Li, Kangkang & Yu, Hai & Jiang, Kaiqi & Chen, Jian & Feron, Paul, 2018. "Amine-based post-combustion CO2 capture mediated by metal ions: Advancement of CO2 desorption using copper ions," Applied Energy, Elsevier, vol. 211(C), pages 1030-1038.
    17. Zhao, Zhijun & Xing, Xiao & Tang, Zhigang & Zheng, Yong & Fei, Weiyang & Liang, Xiangfeng & Ataeivarjovi, E. & Guo, Dong, 2018. "Experiment and simulation study of CO2 solubility in dimethyl carbonate, 1-octyl-3-methylimidazolium tetrafluoroborate and their mixtures," Energy, Elsevier, vol. 143(C), pages 35-42.
    18. Zhang, Xiaowen & Zhang, Rui & Liu, Helei & Gao, Hongxia & Liang, Zhiwu, 2018. "Evaluating CO2 desorption performance in CO2-loaded aqueous tri-solvent blend amines with and without solid acid catalysts," Applied Energy, Elsevier, vol. 218(C), pages 417-429.
    19. Narukulla, Ramesh & Chaturvedi, Krishna Raghav & Ojha, Umaprasana & Sharma, Tushar, 2022. "Carbon dioxide capturing evaluation of polyacryloyl hydrazide solutions via rheological analysis for carbon utilization applications," Energy, Elsevier, vol. 241(C).
    20. Wakiyama, Takako & Zusman, Eric, 2021. "The impact of electricity market reform and subnational climate policy on carbon dioxide emissions across the United States: A path analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:5827-:d:1108933. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.