IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v101y2020i2d10.1007_s11069-020-03882-4.html
   My bibliography  Save this article

Coastal flood: a composite method for past events characterisation providing insights in past, present and future hazards—joining historical, statistical and modelling approaches

Author

Listed:
  • Déborah Idier

    (BRGM)

  • Jérémy Rohmer

    (BRGM)

  • Rodrigo Pedreros

    (BRGM)

  • Sylvestre Roy

    (BRGM)

  • Jérome Lambert

    (BRGM)

  • Jessie Louisor

    (BRGM)

  • Gonéri Cozannet

    (BRGM)

  • Erwan Cornec

    (GEOS-AEL)

Abstract

The characterisation of past coastal flood events is crucial for risk prevention. However, it is limited by the partial nature of historical information on flood events and the lack or limited quality of past hydro-meteorological data. In addition, coastal flood processes are complex, driven by many hydro-meteorological processes, making mechanisms and probability analysis challenging. Here, we tackle these issues by joining historical, statistical and modelling approaches. We focus on a macrotidal site (Gâvres, France) subject to overtopping and investigate the 1900–2010 period. We build a continuous hydro-meteorological database and a damage event database using archives, newspapers, maps and aerial photographs. Using together these historical information, hindcasts and hydrodynamic models, we identify nine flood events, among which five are significant flood events (four with high confidence: 1924, 1978, 2001, 2008; one with a lower confidence: 1904). These flood events are driven by the combination of sea-level rise, tide, atmospheric surge, offshore wave conditions and local wind. We further analyse the critical conditions leading to flood, including the effect of coastal defences, showing, for instance, that the present coastal defences would not have allowed to face the hydro-meteorological conditions of 09/02/1924, whose bi-variate return periods of exceedance $$T_\mathrm{R}$$TR (still water level relative to the mean sea level and significant wave height) are larger than 1000 year. In the coming decades, $$T_\mathrm{R}$$TR is expected to significantly decrease with sea-level rise, reaching values smaller than 1 year, for eight of the nine historical events, for a sea-level rise of 0.63 m, which is equal to the median sea-level rise projected by the 5th Assessment Report of the IPCC in this region for RCP8.5 in 2100.

Suggested Citation

  • Déborah Idier & Jérémy Rohmer & Rodrigo Pedreros & Sylvestre Roy & Jérome Lambert & Jessie Louisor & Gonéri Cozannet & Erwan Cornec, 2020. "Coastal flood: a composite method for past events characterisation providing insights in past, present and future hazards—joining historical, statistical and modelling approaches," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(2), pages 465-501, March.
  • Handle: RePEc:spr:nathaz:v:101:y:2020:i:2:d:10.1007_s11069-020-03882-4
    DOI: 10.1007/s11069-020-03882-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-020-03882-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-020-03882-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Carson & A. Köhl & D. Stammer & A. B. A. Slangen & C. A. Katsman & R. S. W. van de Wal & J. Church & N. White, 2016. "Coastal sea level changes, observed and projected during the 20th and 21st century," Climatic Change, Springer, vol. 134(1), pages 269-281, January.
    2. Stephane Hallegatte & Colin Green & Robert J. Nicholls & Jan Corfee-Morlot, 2013. "Future flood losses in major coastal cities," Nature Climate Change, Nature, vol. 3(9), pages 802-806, September.
    3. Matthew Wadey & Sally Brown & Robert J. Nicholls & Ivan Haigh, 2017. "Coastal flooding in the Maldives: an assessment of historic events and their implications," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(1), pages 131-159, October.
    4. Sanne Muis & Martin Verlaan & Hessel C. Winsemius & Jeroen C. J. H. Aerts & Philip J. Ward, 2016. "A global reanalysis of storm surges and extreme sea levels," Nature Communications, Nature, vol. 7(1), pages 1-12, September.
    5. Panagiota Galiatsatou & Christos Makris & Panayotis Prinos & Dimitrios Kokkinos, 2019. "Nonstationary joint probability analysis of extreme marine variables to assess design water levels at the shoreline in a changing climate," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(3), pages 1051-1089, September.
    6. M. Carson & A. Köhl & D. Stammer & A. A. Slangen & C. Katsman & R. W. van de Wal & J. Church & N. White, 2016. "Coastal sea level changes, observed and projected during the 20th and 21st century," Climatic Change, Springer, vol. 134(1), pages 269-281, January.
    7. T. Wahl & I. D. Haigh & R. J. Nicholls & A. Arns & S. Dangendorf & J. Hinkel & A. B. A. Slangen, 2017. "Understanding extreme sea levels for broad-scale coastal impact and adaptation analysis," Nature Communications, Nature, vol. 8(1), pages 1-12, December.
    8. Janet E. Heffernan & Jonathan A. Tawn, 2004. "A conditional approach for multivariate extreme values (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(3), pages 497-546, August.
    9. Michalis I. Vousdoukas & Lorenzo Mentaschi & Evangelos Voukouvalas & Martin Verlaan & Svetlana Jevrejeva & Luke P. Jackson & Luc Feyen, 2018. "Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    10. Yongqiang Zong & Michael Tooley, 2003. "A Historical Record of Coastal Floods in Britain: Frequencies and Associated Storm Tracks," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 29(1), pages 13-36, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Óscar Ferreira & Sunna Kupfer & Susana Costas, 2021. "Implications of sea-level rise for overwash enhancement at South Portugal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(3), pages 2221-2239, December.
    2. Ben S. Hague & Andy J. Taylor, 2021. "Tide-only inundation: a metric to quantify the contribution of tides to coastal inundation under sea-level rise," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 675-695, May.
    3. López-Lopera, Andrés F. & Idier, Déborah & Rohmer, Jérémy & Bachoc, François, 2022. "Multioutput Gaussian processes with functional data: A study on coastal flood hazard assessment," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weiqing Han & Lei Zhang & Gerald A. Meehl & Shoichiro Kido & Tomoki Tozuka & Yuanlong Li & Michael J. McPhaden & Aixue Hu & Anny Cazenave & Nan Rosenbloom & Gary Strand & B. Jason West & Wen Xing, 2022. "Sea level extremes and compounding marine heatwaves in coastal Indonesia," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. D. J. Rasmussen & Scott Kulp & Robert E. Kopp & Michael Oppenheimer & Benjamin H. Strauss, 2022. "Popular extreme sea level metrics can better communicate impacts," Climatic Change, Springer, vol. 170(3), pages 1-17, February.
    3. Ashley C. Freeman & Walker S. Ashley, 2017. "Changes in the US hurricane disaster landscape: the relationship between risk and exposure," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 659-682, September.
    4. Ke Wang & Yongsheng Yang & Genserik Reniers & Quanyi Huang, 2021. "A study into the spatiotemporal distribution of typhoon storm surge disasters in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1237-1256, August.
    5. Maria De La Fuente & Sandra Arndt & Héctor Marín-Moreno & Tim A. Minshull, 2022. "Assessing the Benthic Response to Climate-Driven Methane Hydrate Destabilisation: State of the Art and Future Modelling Perspectives," Energies, MDPI, vol. 15(9), pages 1-32, May.
    6. Antoine Mandel & Timothy Tiggeloven & Daniel Lincke & Elco Koks & Philip Ward & Jochen Hinkel, 2021. "Risks on global financial stability induced by climate change: the case of flood risks," Climatic Change, Springer, vol. 166(1), pages 1-24, May.
    7. Shijin Wang, 2024. "Opportunities and threats of cryosphere change to the achievement of UN 2030 SDGs," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.
    8. Maruyama Rentschler,Jun Erik & Avner,Paolo & Marconcini,Mattia & Su,Rui & Strano,Emanuele & Bernard,Louise Alice Karine & Riom,Capucine Anne Veronique & Hallegatte,Stephane, 2022. "Rapid Urban Growth in Flood Zones : Global Evidence since 1985," Policy Research Working Paper Series 10014, The World Bank.
    9. Yebao Wang & Jiaqi Liu & Xin Du & Qian Liu & Xin Liu, 2021. "Temporal-spatial characteristics of storm surges and rough seas in coastal areas of Mainland China from 2000 to 2019," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1273-1285, June.
    10. Michalis I. Vousdoukas & Joanne Clarke & Roshanka Ranasinghe & Lena Reimann & Nadia Khalaf & Trang Minh Duong & Birgitt Ouweneel & Salma Sabour & Carley E. Iles & Christopher H. Trisos & Luc Feyen & L, 2022. "African heritage sites threatened as sea-level rise accelerates," Nature Climate Change, Nature, vol. 12(3), pages 256-262, March.
    11. Jasper Verschuur & Dewi Bars & Caroline A. Katsman & Sierd de Vries & Roshanka Ranasinghe & Sybren S. Drijfhout & Stefan G. J. Aarninkhof, 2020. "Implications of ambiguity in Antarctic ice sheet dynamics for future coastal erosion estimates: a probabilistic assessment," Climatic Change, Springer, vol. 162(2), pages 859-876, September.
    12. Bevacqua, Emanuele & Maraun, Douglas & Vousdoukas, Michalis I. & Voukouvalas, Evangelos & Vrac, Mathieu & Mentaschi, Lorenzo & Widmann, Martin, 2018. "Higher potential compound flood risk in Northern Europe under anthropogenic climate change," Earth Arxiv ta764, Center for Open Science.
    13. Ryan Paulik & Scott A. Stephens & Robert G. Bell & Sanjay Wadhwa & Ben Popovich, 2020. "National-Scale Built-Environment Exposure to 100-Year Extreme Sea Levels and Sea-Level Rise," Sustainability, MDPI, vol. 12(4), pages 1-16, February.
    14. Jun Rentschler & Melda Salhab & Bramka Arga Jafino, 2022. "Flood exposure and poverty in 188 countries," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Michalis I. Vousdoukas & Panagiotis Athanasiou & Alessio Giardino & Lorenzo Mentaschi & Alessandro Stocchino & Robert E. Kopp & Pelayo Menéndez & Michael W. Beck & Roshanka Ranasinghe & Luc Feyen, 2023. "Small Island Developing States under threat by rising seas even in a 1.5 °C warming world," Nature Sustainability, Nature, vol. 6(12), pages 1552-1564, December.
    16. Xinmeng Shan & Jie Yin & Jun Wang, 2022. "Risk assessment of shanghai extreme flooding under the land use change scenario," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 1039-1060, January.
    17. Tina Dura & Andra J. Garner & Robert Weiss & Robert E. Kopp & Simon E. Engelhart & Robert C. Witter & Richard W. Briggs & Charles S. Mueller & Alan R. Nelson & Benjamin P. Horton, 2021. "Changing impacts of Alaska-Aleutian subduction zone tsunamis in California under future sea-level rise," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    18. Abinash Bhattachan & Matthew D. Jurjonas & Priscilla R. Morris & Paul J. Taillie & Lindsey S. Smart & Ryan E. Emanuel & Erin L. Seekamp, 2019. "Linking residential saltwater intrusion risk perceptions to physical exposure of climate change impacts in rural coastal communities of North Carolina," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(3), pages 1277-1295, July.
    19. Denis Maragno & Michele Dalla Fontana & Francesco Musco, 2020. "Mapping Heat Stress Vulnerability and Risk Assessment at the Neighborhood Scale to Drive Urban Adaptation Planning," Sustainability, MDPI, vol. 12(3), pages 1-16, February.
    20. Ping Lan & Li Guo & Yaling Zhang & Guanghua Qin & Xiaodong Li & Carlos R. Mello & Elizabeth W. Boyer & Yehui Zhang & Bihang Fan, 2024. "Updating probable maximum precipitation for Hong Kong under intensifying extreme precipitation events," Climatic Change, Springer, vol. 177(2), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:101:y:2020:i:2:d:10.1007_s11069-020-03882-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.