IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i11p1871-d1517143.html
   My bibliography  Save this article

Climate Change May Increase the Impact of Coastal Flooding on Carbon Storage in China’s Coastal Terrestrial Ecosystems

Author

Listed:
  • Shuyu Yang

    (College of the Environment & Ecology, Xiamen University, No. 4221 Xiang’an South Road, Xiang’an District, Xiamen 361102, China)

  • Jiaju Lin

    (College of the Environment & Ecology, Xiamen University, No. 4221 Xiang’an South Road, Xiang’an District, Xiamen 361102, China)

  • Xiongzhi Xue

    (College of the Environment & Ecology, Xiamen University, No. 4221 Xiang’an South Road, Xiang’an District, Xiamen 361102, China
    Fujian Institute for Sustainable Oceans, Xiamen University, No. 4221 Xiang’an South Road, Xiang’an District, Xiamen 361102, China)

Abstract

Climate warming exacerbates the deterioration of soil and degradation of vegetation caused by coastal flooding, impairing ecosystem climate-regulating functions. This will elevate the risk of carbon storage (CS) loss, further intensifying climate change. To delve deeper into this aspect, we aimed to integrate future land use/land cover changes and global mean sea-level rise to assess the impact of coastal floods on terrestrial CS under the effects of climate change. We compared the 10-year (RP10) and 100-year (RP100) return-period floods in 2020 with projected scenarios for 2050 under SSP1-26, SSP2-45, SSP3-70, and SSP5-85. The study findings indicate that CS loss caused by coastal flooding in China’s coastal zones was 198.71 Tg (RP10) and 263.46 Tg (RP100) in 2020. In 2050, under the SSP1-26, SSP2-45, and SSP3-70 scenarios, the CS loss is projected to increase sequentially, underscoring the importance of implementing globally coordinated strategies for mitigating climate change to effectively manage coastal flooding. The value of CS loss is expected to increase in 2050, with an anticipated rise of 97–525% (RP10) and 91–498% (RP100). This highlights the essential need to include coastal flood-induced CS changes in carbon emission management and coastal climate risk assessments.

Suggested Citation

  • Shuyu Yang & Jiaju Lin & Xiongzhi Xue, 2024. "Climate Change May Increase the Impact of Coastal Flooding on Carbon Storage in China’s Coastal Terrestrial Ecosystems," Land, MDPI, vol. 13(11), pages 1-21, November.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:11:p:1871-:d:1517143
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/11/1871/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/11/1871/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stephane Hallegatte & Colin Green & Robert J. Nicholls & Jan Corfee-Morlot, 2013. "Future flood losses in major coastal cities," Nature Climate Change, Nature, vol. 3(9), pages 802-806, September.
    2. Joungyoon Chun & Choong-Ki Kim & Wanmo Kang & Hyemin Park & Gieun Kim & Woo-Kyun Lee, 2019. "Sustainable Management of Carbon Sequestration Service in Areas with High Development Pressure: Considering Land Use Changes and Carbon Costs," Sustainability, MDPI, vol. 11(18), pages 1-20, September.
    3. Jianli Liu & Jiahong Wen & Youqin Huang & Minqi Shi & Qingjie Meng & Jinhong Ding & Hui Xu, 2015. "Human settlement and regional development in the context of climate change: a spatial analysis of low elevation coastal zones in China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(4), pages 527-546, April.
    4. David Anthoff & Richard Tol, 2013. "Erratum to: The uncertainty about the social cost of carbon: A decomposition analysis using fund," Climatic Change, Springer, vol. 121(2), pages 413-413, November.
    5. Dong-Feng Ren & Ai-Hua Cao & Fei-Yue Wang, 2023. "Response and Multi-Scenario Prediction of Carbon Storage and Habitat Quality to Land Use in Liaoning Province, China," Sustainability, MDPI, vol. 15(5), pages 1-23, March.
    6. Claudia Tebaldi & Roshanka Ranasinghe & Michalis Vousdoukas & D. J. Rasmussen & Ben Vega-Westhoff & Ebru Kirezci & Robert E. Kopp & Ryan Sriver & Lorenzo Mentaschi, 2021. "Extreme sea levels at different global warming levels," Nature Climate Change, Nature, vol. 11(9), pages 746-751, September.
    7. Michalis I. Vousdoukas & Lorenzo Mentaschi & Evangelos Voukouvalas & Martin Verlaan & Svetlana Jevrejeva & Luke P. Jackson & Luc Feyen, 2018. "Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D. J. Rasmussen & Scott Kulp & Robert E. Kopp & Michael Oppenheimer & Benjamin H. Strauss, 2022. "Popular extreme sea level metrics can better communicate impacts," Climatic Change, Springer, vol. 170(3), pages 1-17, February.
    2. Alexandra Toimil & Iñigo J. Losada & Moisés Álvarez-Cuesta & Gonéri Cozannet, 2023. "Demonstrating the value of beaches for adaptation to future coastal flood risk," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Jasper Verschuur & Dewi Bars & Caroline A. Katsman & Sierd de Vries & Roshanka Ranasinghe & Sybren S. Drijfhout & Stefan G. J. Aarninkhof, 2020. "Implications of ambiguity in Antarctic ice sheet dynamics for future coastal erosion estimates: a probabilistic assessment," Climatic Change, Springer, vol. 162(2), pages 859-876, September.
    4. Xinmeng Shan & Jie Yin & Jun Wang, 2022. "Risk assessment of shanghai extreme flooding under the land use change scenario," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 1039-1060, January.
    5. Ke Wang & Yongsheng Yang & Genserik Reniers & Quanyi Huang, 2021. "A study into the spatiotemporal distribution of typhoon storm surge disasters in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1237-1256, August.
    6. Déborah Idier & Jérémy Rohmer & Rodrigo Pedreros & Sylvestre Roy & Jérome Lambert & Jessie Louisor & Gonéri Cozannet & Erwan Cornec, 2020. "Coastal flood: a composite method for past events characterisation providing insights in past, present and future hazards—joining historical, statistical and modelling approaches," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(2), pages 465-501, March.
    7. Rafael Almar & Julien Boucharel & Marcan Graffin & Gregoire Ondoa Abessolo & Gregoire Thoumyre & Fabrice Papa & Roshanka Ranasinghe & Jennifer Montano & Erwin W. J. Bergsma & Mohamed Wassim Baba & Fei, 2023. "Influence of El Niño on the variability of global shoreline position," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Ryan Paulik & Scott A. Stephens & Robert G. Bell & Sanjay Wadhwa & Ben Popovich, 2020. "National-Scale Built-Environment Exposure to 100-Year Extreme Sea Levels and Sea-Level Rise," Sustainability, MDPI, vol. 12(4), pages 1-16, February.
    9. Abinash Bhattachan & Matthew D. Jurjonas & Priscilla R. Morris & Paul J. Taillie & Lindsey S. Smart & Ryan E. Emanuel & Erin L. Seekamp, 2019. "Linking residential saltwater intrusion risk perceptions to physical exposure of climate change impacts in rural coastal communities of North Carolina," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(3), pages 1277-1295, July.
    10. Tiruwork B. Tibebu & Eric Hittinger & Qing Miao & Eric Williams, 2024. "Adoption Model Choice Affects the Optimal Subsidy for Residential Solar," Energies, MDPI, vol. 17(3), pages 1-19, February.
    11. Ping Lan & Li Guo & Yaling Zhang & Guanghua Qin & Xiaodong Li & Carlos R. Mello & Elizabeth W. Boyer & Yehui Zhang & Bihang Fan, 2024. "Updating probable maximum precipitation for Hong Kong under intensifying extreme precipitation events," Climatic Change, Springer, vol. 177(2), pages 1-20, February.
    12. Allan Beltrán & David Maddison & Robert J. R. Elliott, 2018. "Assessing the Economic Benefits of Flood Defenses: A Repeat‐Sales Approach," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2340-2367, November.
    13. Céline Grislain-Letrémy & Bertrand Villeneuve, 2019. "Natural disasters, land-use, and insurance," The Geneva Papers on Risk and Insurance Theory, Springer;International Association for the Study of Insurance Economics (The Geneva Association), vol. 44(1), pages 54-86, March.
    14. Martin Vezér & Alexander Bakker & Klaus Keller & Nancy Tuana, 2018. "Epistemic and ethical trade-offs in decision analytical modelling," Climatic Change, Springer, vol. 147(1), pages 1-10, March.
    15. Adriana Kocornik-Mina & Thomas K. J. McDermott & Guy Michaels & Ferdinand Rauch, 2020. "Flooded Cities," American Economic Journal: Applied Economics, American Economic Association, vol. 12(2), pages 35-66, April.
    16. Agliardi, Elettra & Xepapadeas, Anastasios, 2022. "Temperature targets, deep uncertainty and extreme events in the design of optimal climate policy," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).
    17. T. Chatzivasileiadis & F. Estrada & M. W. Hofkes & R. S. J. Tol, 2019. "Systematic Sensitivity Analysis of the Full Economic Impacts of Sea Level Rise," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 1183-1217, March.
    18. Britz, Wolfgang & Li, Jingwen & Shang, Linmei, 2021. "Combining large-scale sensitivity analysis in Computable General Equilibrium models with Machine Learning: An Example Application to policy supporting the bio-economy," Conference papers 333285, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    19. Weijiang Li & Jiahong Wen & Bo Xu & Xiande Li & Shiqiang Du, 2018. "Integrated Assessment of Economic Losses in Manufacturing Industry in Shanghai Metropolitan Area Under an Extreme Storm Flood Scenario," Sustainability, MDPI, vol. 11(1), pages 1-19, December.
    20. William G. Bennett & Harshinie Karunarathna & Yunqing Xuan & Muhammad S. B. Kusuma & Mohammad Farid & Arno A. Kuntoro & Harkunti P. Rahayu & Benedictus Kombaitan & Deni Septiadi & Tri N. A. Kesuma & R, 2023. "Modelling compound flooding: a case study from Jakarta, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 277-305, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:11:p:1871-:d:1517143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.