IDEAS home Printed from https://ideas.repec.org/p/ags/aaea04/20319.html
   My bibliography  Save this paper

Entropy-Based Estimation And Inference In Binary Response Models Under Endogeneity

Author

Listed:
  • Miller, Douglas J.
  • Mittelhammer, Ronald C.
  • Judge, George G.

Abstract

This paper considers estimation and inference for the binary response model in the case where endogenous variables are included as arguments of the unknown link function. Semiparametric estimators are proposed that avoid the parametric assumptions underlying the likelihood approach as well as the loss of precision when using nonparametric estimation. Suggestions are made for how the utility maximization decision model can be altered to permit attributes to vary across alternatives.

Suggested Citation

  • Miller, Douglas J. & Mittelhammer, Ronald C. & Judge, George G., 2004. "Entropy-Based Estimation And Inference In Binary Response Models Under Endogeneity," 2004 Annual meeting, August 1-4, Denver, CO 20319, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
  • Handle: RePEc:ags:aaea04:20319
    DOI: 10.22004/ag.econ.20319
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/20319/files/sp04mi02.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.20319?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mittelhammer, Ron C. & Judge, George G., 2005. "Combining estimators to improve structural model estimation and inference under quadratic loss," Journal of Econometrics, Elsevier, vol. 128(1), pages 1-29, September.
    2. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555.
    3. Ahn, Hyungtaik & Powell, James L., 1993. "Semiparametric estimation of censored selection models with a nonparametric selection mechanism," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 3-29, July.
    4. Judge G.G. & Mittelhammer R.C., 2004. "A Semiparametric Basis for Combining Estimation Problems Under Quadratic Loss," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 479-487, January.
    5. Newey, Whitney K., 1987. "Efficient estimation of limited dependent variable models with endogenous explanatory variables," Journal of Econometrics, Elsevier, vol. 36(3), pages 231-250, November.
    6. Mittelhammer, Ronald C. & Judge, George G. & Schoenberg, Ron, 2003. "Empirical Evidence Concerning the Finite Sample Performance of EL-Type Structural Equation Estimation and Inference Methods," CUDARE Working Papers 25090, University of California, Berkeley, Department of Agricultural and Resource Economics.
    7. Klein, Roger W & Spady, Richard H, 1993. "An Efficient Semiparametric Estimator for Binary Response Models," Econometrica, Econometric Society, vol. 61(2), pages 387-421, March.
    8. Hong, Han & Tamer, Elie, 2003. "Endogenous binary choice model with median restrictions," Economics Letters, Elsevier, vol. 80(2), pages 219-225, August.
    9. Dagenais, Marcel G., 1999. "Inconsistency of a proposed nonlinear instrumental variables estimator for probit and logit models with endogenous regressors," Economics Letters, Elsevier, vol. 63(1), pages 19-21, April.
    10. Ichimura, H., 1991. "Semiparametric Least Squares (sls) and Weighted SLS Estimation of Single- Index Models," Papers 264, Minnesota - Center for Economic Research.
    11. Newey, Whitney K., 1986. "Linear instrumental variable estimation of limited dependent variable models with endogenous explanatory variables," Journal of Econometrics, Elsevier, vol. 32(1), pages 127-141, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Judge, George G. & Mittelhammer, Ronald C., 2004. "Estimating the Link Function in Multinomial Response Models under Endogeneity and Quadratic Loss," CUDARE Working Papers 25095, University of California, Berkeley, Department of Agricultural and Resource Economics.
    2. Armando Levy, 2000. "A Simple Consistent Non-parametric Estimator of the Regression Function in a Truncated Sample," Econometric Society World Congress 2000 Contributed Papers 0651, Econometric Society.
    3. Ichimura, Hidehiko & Lee, Sokbae, 2010. "Characterization of the asymptotic distribution of semiparametric M-estimators," Journal of Econometrics, Elsevier, vol. 159(2), pages 252-266, December.
    4. Marian Grendar & George Judge, 2008. "Large-Deviations Theory and Empirical Estimator Choice," Econometric Reviews, Taylor & Francis Journals, vol. 27(4-6), pages 513-525.
    5. Fahs, Rafic & Cardell, N. Scott & Mittelhammer, Ronald C., 2001. "Semiparametric Estimation and Inference in Multinomial Choice Models," 2001 Annual meeting, August 5-8, Chicago, IL 20742, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    6. Mittelhammer, Ronald C. & Judge, George G. & Miller, Douglas J. & Cardell, N. Scott, 2005. "Minimum Divergence Moment Based Binary Response Models: Estimation and Inference," CUDARE Working Papers 25020, University of California, Berkeley, Department of Agricultural and Resource Economics.
    7. Ruoyao Shi, 2021. "An Averaging Estimator for Two Step M Estimation in Semiparametric Models," Working Papers 202105, University of California at Riverside, Department of Economics.
    8. Ahn, Hyungtaik, 1995. "Nonparametric two-stage estimation of conditional choice probabilities in a binary choice model under uncertainty," Journal of Econometrics, Elsevier, vol. 67(2), pages 337-378, June.
    9. Klein, Roger & Shen, Chan & Vella, Francis, 2015. "Estimation of marginal effects in semiparametric selection models with binary outcomes," Journal of Econometrics, Elsevier, vol. 185(1), pages 82-94.
    10. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.
    11. Fosgerau, Mogens & Bierlaire, Michel, 2007. "A practical test for the choice of mixing distribution in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 784-794, August.
    12. Lanot, Gauthier & Walker, Ian, 1998. "The union/non-union wage differential: An application of semi-parametric methods," Journal of Econometrics, Elsevier, vol. 84(2), pages 327-349, June.
    13. Konrad Menzel, 2021. "Structural Sieves," Papers 2112.01377, arXiv.org, revised Apr 2022.
    14. Mittelhammer, Ron C. & Judge, George, 2011. "A family of empirical likelihood functions and estimators for the binary response model," Journal of Econometrics, Elsevier, vol. 164(2), pages 207-217, October.
    15. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    16. Ron Mittelhammer & George Judge, 2009. "A Minimum Power Divergence Class of CDFs and Estimators for the Binary Choice Model," International Econometric Review (IER), Econometric Research Association, vol. 1(1), pages 33-49, April.
    17. Giuseppe Ragusa, 2011. "Minimum Divergence, Generalized Empirical Likelihoods, and Higher Order Expansions," Econometric Reviews, Taylor & Francis Journals, vol. 30(4), pages 406-456, August.
    18. Gary V. Engelhardt & Anil Kumar, 2007. "Employer Matching and 401(k) Saving: Evidence from the Health and Retirement Study," NBER Chapters, in: Public Policy and Retirement, Trans-Atlantic Public Economics Seminar (TAPES), pages 1920-1943, National Bureau of Economic Research, Inc.
    19. Ye, Xin & Garikapati, Venu M. & You, Daehyun & Pendyala, Ram M., 2017. "A practical method to test the validity of the standard Gumbel distribution in logit-based multinomial choice models of travel behavior," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 173-192.
    20. Gorgens, T., 1999. "Semiparametric Estimation of Single-Index Transition Intensities," Papers 99-25, Carleton - School of Public Administration.

    More about this item

    Keywords

    Research Methods/ Statistical Methods;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea04:20319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.