IDEAS home Printed from https://ideas.repec.org/a/wly/jfutmk/v44y2024i3p432-450.html
   My bibliography  Save this article

Hedging performance analysis of energy markets: Evidence from copula quantile regression

Author

Listed:
  • Xianling Ren
  • Xinping Yu

Abstract

This study investigates hedging performance with respect to different market structures for energy‐related commodities, including West Texas Intermediate crude oil, Brent crude oil, Chinese crude oil, and Heating oil. Copula quantile regression functions and the generalized autoregressive conditionally heteroscedasticity model are combined to analyze the nonlinear impact of dependence and the heterogeneous impact of market structure changes on hedging performance. Results show that hedging performance presents nonlinearity and market structure changes have surprisingly strong heterogeneous effects on the quantile hedge ratio, where bearish and bullish have lower hedge ratios than normal markets, which is captured better by Clayton copula quantile regression. Additionally, the trend of hedging effectiveness over different market structures also shows an inverted U shape. After changing data frequency or the types of futures contracts, the conclusions remain the same. Our empirical findings imply that hedgers are supposed to adjust the hedging number of futures according to market structure changes to hedge price risk effectively.

Suggested Citation

  • Xianling Ren & Xinping Yu, 2024. "Hedging performance analysis of energy markets: Evidence from copula quantile regression," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(3), pages 432-450, March.
  • Handle: RePEc:wly:jfutmk:v:44:y:2024:i:3:p:432-450
    DOI: 10.1002/fut.22476
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/fut.22476
    Download Restriction: no

    File URL: https://libkey.io/10.1002/fut.22476?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Leland L. Johnson, 1960. "The Theory of Hedging and Speculation in Commodity Futures," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 27(3), pages 139-151.
    2. Roger Koenker, 2017. "Quantile Regression: 40 Years On," Annual Review of Economics, Annual Reviews, vol. 9(1), pages 155-176, September.
    3. Chunhachinda, Pornchai & de Boyrie, Maria E. & Pavlova, Ivelina, 2019. "Measuring the hedging effectiveness of commodities," Finance Research Letters, Elsevier, vol. 30(C), pages 201-207.
    4. Cotter, John & Hanly, Jim, 2015. "Performance of utility based hedges," Energy Economics, Elsevier, vol. 49(C), pages 718-726.
    5. Cecchetti, Stephen G & Cumby, Robert E & Figlewski, Stephen, 1988. "Estimation of the Optimal Futures Hedge," The Review of Economics and Statistics, MIT Press, vol. 70(4), pages 623-630, November.
    6. Eric Bouye & Mark Salmon, 2009. "Dynamic copula quantile regressions and tail area dynamic dependence in Forex markets," The European Journal of Finance, Taylor & Francis Journals, vol. 15(7-8), pages 721-750.
    7. Da‐Hsiang Donald Lien, 1996. "The effect of the cointegration relationship on futures hedging: A note," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 16(7), pages 773-780, October.
    8. Roger Koenker, 2017. "Quantile regression 40 years on," CeMMAP working papers CWP36/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    9. Pan, Zhiyuan & Wang, Yudong & Yang, Li, 2014. "Hedging crude oil using refined product: A regime switching asymmetric DCC approach," Energy Economics, Elsevier, vol. 46(C), pages 472-484.
    10. Sun, Jie & Zhao, Xiaojun & Xu, Chao, 2021. "Crude oil market autocorrelation: Evidence from multiscale quantile regression analysis," Energy Economics, Elsevier, vol. 98(C).
    11. Conlon, Thomas & Cotter, John, 2013. "Downside risk and the energy hedger's horizon," Energy Economics, Elsevier, vol. 36(C), pages 371-379.
    12. Baillie, Richard T & Myers, Robert J, 1991. "Bivariate GARCH Estimation of the Optimal Commodity Futures Hedge," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(2), pages 109-124, April-Jun.
    13. Ederington, Louis H, 1979. "The Hedging Performance of the New Futures Markets," Journal of Finance, American Finance Association, vol. 34(1), pages 157-170, March.
    14. Billio, Monica & Casarin, Roberto & Osuntuyi, Anthony, 2018. "Markov switching GARCH models for Bayesian hedging on energy futures markets," Energy Economics, Elsevier, vol. 70(C), pages 545-562.
    15. Donald Lien & Keshab Shrestha & Jing Wu, 2016. "Quantile Estimation of Optimal Hedge Ratio," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(2), pages 194-214, February.
    16. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    17. Yu, Xing & Li, Yanyan & Lu, Junli & Shen, Xilin, 2023. "Futures hedging in crude oil markets: A trade-off between risk and return," Resources Policy, Elsevier, vol. 80(C).
    18. Powell, James L., 1986. "Censored regression quantiles," Journal of Econometrics, Elsevier, vol. 32(1), pages 143-155, June.
    19. Janet E. Heffernan & Jonathan A. Tawn, 2004. "A conditional approach for multivariate extreme values (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(3), pages 497-546, August.
    20. Shrestha, Keshab & Subramaniam, Ravichandran & Peranginangin, Yessy & Philip, Sheena Sara Suresh, 2018. "Quantile hedge ratio for energy markets," Energy Economics, Elsevier, vol. 71(C), pages 253-272.
    21. Tian, Maoxi & Alshater, Muneer M. & Yoon, Seong-Min, 2022. "Dynamic risk spillovers from oil to stock markets: Fresh evidence from GARCH copula quantile regression-based CoVaR model," Energy Economics, Elsevier, vol. 115(C).
    22. Kim, Jong-Min & Tabacu, Lucia & Jung, Hojin, 2020. "A quantile-copula approach to dependence between financial assets," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    23. Trabelsi, Nader & Tiwari, Aviral Kumar & Hammoudeh, Shawkat, 2022. "Spillovers and directional predictability between international energy commodities and their implications for optimal portfolio and hedging," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    24. Ji-Eun Choi & Dong Wan Shin, 2022. "Quantile correlation coefficient: a new tail dependence measure," Statistical Papers, Springer, vol. 63(4), pages 1075-1104, August.
    25. Roger Koenker, 2017. "Quantile regression 40 years on," CeMMAP working papers 36/17, Institute for Fiscal Studies.
    26. Chen, Yongfei & Wei, Yu & Bai, Lan & Zhang, Jiahao & Wang, Zhuo, 2023. "Connectedness and hedging effects among China's nonferrous metal, crude oil and green bond markets: An extreme perspective," Finance Research Letters, Elsevier, vol. 58(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shrestha, Keshab & Subramaniam, Ravichandran & Peranginangin, Yessy & Philip, Sheena Sara Suresh, 2018. "Quantile hedge ratio for energy markets," Energy Economics, Elsevier, vol. 71(C), pages 253-272.
    2. Wang, Yudong & Geng, Qianjie & Meng, Fanyi, 2019. "Futures hedging in crude oil markets: A comparison between minimum-variance and minimum-risk frameworks," Energy, Elsevier, vol. 181(C), pages 815-826.
    3. Martínez, Beatriz & Torró, Hipòlit, 2015. "European natural gas seasonal effects on futures hedging," Energy Economics, Elsevier, vol. 50(C), pages 154-168.
    4. Shrestha, Keshab & Subramaniam, Ravichandran & Rassiah, Puspavathy, 2017. "Pure martingale and joint normality tests for energy futures contracts," Energy Economics, Elsevier, vol. 63(C), pages 174-184.
    5. You‐How Go & Jia‐Jun Teo & Kam Fong Chan, 2023. "The effectiveness of crude oil futures hedging during infectious disease outbreaks in the 21st century," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(11), pages 1559-1575, November.
    6. Pablo Urtubia & Alfonso Novales & Andrés Mora-Valencia, 2021. "Cross-Hedging Portfolios in Emerging Stock Markets: Evidence for the LATIBEX Index," Mathematics, MDPI, vol. 9(21), pages 1-19, October.
    7. Zhu, Pengfei & Lu, Tuantuan & Chen, Shenglan, 2022. "How do crude oil futures hedge crude oil spot risk after the COVID-19 outbreak? A wavelet denoising-GARCHSK-SJC Copula hedge ratio estimation method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    8. Qu, Hui & Wang, Tianyang & Zhang, Yi & Sun, Pengfei, 2019. "Dynamic hedging using the realized minimum-variance hedge ratio approach – Examination of the CSI 300 index futures," Pacific-Basin Finance Journal, Elsevier, vol. 57(C).
    9. Čech, František & Zítek, Michal, 2022. "Marine fuel hedging under the sulfur cap regulations," Energy Economics, Elsevier, vol. 113(C).
    10. Stavros Degiannakis & Christos Floros & Enrique Salvador & Dimitrios Vougas, 2022. "On the stationarity of futures hedge ratios," Operational Research, Springer, vol. 22(3), pages 2281-2303, July.
    11. Bessler, Wolfgang & Leonhardt, Alexander & Wolff, Dominik, 2016. "Analyzing hedging strategies for fixed income portfolios: A Bayesian approach for model selection," International Review of Financial Analysis, Elsevier, vol. 46(C), pages 239-256.
    12. Chen, Zhao & Cheng, Vivian Xinyi & Liu, Xu, 2024. "Reprint: Hypothesis testing on high dimensional quantile regression," Journal of Econometrics, Elsevier, vol. 239(2).
    13. Alexander, Carol & Prokopczuk, Marcel & Sumawong, Anannit, 2013. "The (de)merits of minimum-variance hedging: Application to the crack spread," Energy Economics, Elsevier, vol. 36(C), pages 698-707.
    14. Chong-Chuo Chang & Oshamah Lin Lin & Oshamah Yu-Cheng Chang & Oshamah Kun-Zhan Hsu, 2023. "Impact of Financial Liberalization on Firm Risk," Advances in Decision Sciences, Asia University, Taiwan, vol. 27(3), pages 14-45, September.
    15. Bessler, Wolfgang & Wolff, Dominik, 2014. "Hedging European government bond portfolios during the recent sovereign debt crisis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 33(C), pages 379-399.
    16. Dinica, Mihai Cristian & Armeanu, Daniel, 2014. "The Optimal Hedging Ratio for Non-Ferrous Metals," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 105-122, March.
    17. Vollmer, Teresa & von Cramon-Taubadel, Stephan, 2020. "The Optimal Wheat Futures Hedge at the Euronext Paris from a Farmer’s Perspective," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 69(01), March.
    18. Sulkhan Chavleishvili & Simone Manganelli, 2024. "Forecasting and stress testing with quantile vector autoregression," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(1), pages 66-85, January.
    19. Chen, Le-Yu & Lee, Sokbae, 2023. "Sparse quantile regression," Journal of Econometrics, Elsevier, vol. 235(2), pages 2195-2217.
    20. Yu, Xing & Shen, Xilin & Li, Yanyan & Gong, Xue, 2023. "Selective hedging strategies for crude oil futures based on market state expectations," Global Finance Journal, Elsevier, vol. 57(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jfutmk:v:44:y:2024:i:3:p:432-450. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0270-7314/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.