IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v42y2023i8p2139-2166.html
   My bibliography  Save this article

Portfolio optimization based on forecasting models using vine copulas: An empirical assessment for global financial crises

Author

Listed:
  • Maziar Sahamkhadam
  • Andreas Stephan

Abstract

We employ and examine vine copulas in modeling symmetric and asymmetric dependency structures and forecasting financial returns from 2001 to 2022, a period that includes the 2008 financial crisis, the 2011 European sovereign debt crisis, the 2020 COVID‐19 pandemic crisis, and the 2022 Russian invasion of Ukraine with the resulting energy crisis. We analyze the asset allocations performed and test different portfolio strategies, such as maximum Sharpe ratio, minimum variance, and minimum conditional value at risk. Using international financial market indices, we specify the regular, drawable, and canonical vine copulas, such as the Gaussian, Student's t, Clayton, Frank, Joe, Gumbel, and mixed copulas, and analyze both in‐sample and out‐of‐sample portfolio performances. Out‐of‐sample portfolio back‐testing shows that vine copulas reduce portfolio risk better than the benchmark portfolio strategies and also better than simple multivariate copulas. Overall, we find that mixed vine copula models perform best with regard to risk reduction, both for the entire period 2001–2022 and during financial crises periods. Thus, a mixture of symmetric and asymmetric copula families works best in terms of portfolio risk reduction irrespective of the chosen optimization approach.

Suggested Citation

  • Maziar Sahamkhadam & Andreas Stephan, 2023. "Portfolio optimization based on forecasting models using vine copulas: An empirical assessment for global financial crises," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(8), pages 2139-2166, December.
  • Handle: RePEc:wly:jforec:v:42:y:2023:i:8:p:2139-2166
    DOI: 10.1002/for.3009
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.3009
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.3009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    2. Righi, Marcelo Brutti & Ceretta, Paulo Sergio, 2013. "Risk prediction management and weak form market efficiency in Eurozone financial crisis," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 384-393.
    3. Dißmann, J. & Brechmann, E.C. & Czado, C. & Kurowicka, D., 2013. "Selecting and estimating regular vine copulae and application to financial returns," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 52-69.
    4. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    5. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    6. John C. Driscoll & Aart C. Kraay, 1998. "Consistent Covariance Matrix Estimation With Spatially Dependent Panel Data," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 549-560, November.
    7. Victor DeMiguel & Lorenzo Garlappi & Francisco J. Nogales & Raman Uppal, 2009. "A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms," Management Science, INFORMS, vol. 55(5), pages 798-812, May.
    8. Bekiros, Stelios & Hernandez, Jose Arreola & Hammoudeh, Shawkat & Nguyen, Duc Khuong, 2015. "Multivariate dependence risk and portfolio optimization: An application to mining stock portfolios," Resources Policy, Elsevier, vol. 46(P2), pages 1-11.
    9. Reboredo, Juan C. & Ugolini, Andrea, 2015. "Downside/upside price spillovers between precious metals: A vine copula approach," The North American Journal of Economics and Finance, Elsevier, vol. 34(C), pages 84-102.
    10. Brechmann, Eike C. & Joe, Harry, 2015. "Truncation of vine copulas using fit indices," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 19-33.
    11. Cerrato, Mario & Crosby, John & Kim, Minjoo & Zhao, Yang, 2017. "Relation between higher order comoments and dependence structure of equity portfolio," Journal of Empirical Finance, Elsevier, vol. 40(C), pages 101-120.
    12. Low, Rand Kwong Yew & Alcock, Jamie & Faff, Robert & Brailsford, Timothy, 2013. "Canonical vine copulas in the context of modern portfolio management: Are they worth it?," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3085-3099.
    13. Siegfried Schaible, 1976. "Duality in Fractional Programming: A Unified Approach," Operations Research, INFORMS, vol. 24(3), pages 452-461, June.
    14. Støve, Bård & Tjøstheim, Dag & Hufthammer, Karl Ove, 2014. "Using local Gaussian correlation in a nonlinear re-examination of financial contagion," Journal of Empirical Finance, Elsevier, vol. 25(C), pages 62-82.
    15. Jose Arreola Hernandez & Mazin A.M. Al Janabi, 2020. "Forecasting of dependence, market, and investment risks of a global index portfolio," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(3), pages 512-532, April.
    16. Jose Arreola Hernandez & Shawkat Hammoudeh & Duc Khuong Nguyen & Mazin A. M. Al Janabi & Juan Carlos Reboredo, 2017. "Global financial crisis and dependence risk analysis of sector portfolios: a vine copula approach," Applied Economics, Taylor & Francis Journals, vol. 49(25), pages 2409-2427, May.
    17. Arreola Hernandez, Jose, 2014. "Are oil and gas stocks from the Australian market riskier than coal and uranium stocks? Dependence risk analysis and portfolio optimization," Energy Economics, Elsevier, vol. 45(C), pages 528-536.
    18. Shahzad, Syed Jawad Hussain & Arreola-Hernandez, Jose & Bekiros, Stelios & Shahbaz, Muhammad & Kayani, Ghulam Mujtaba, 2018. "A systemic risk analysis of Islamic equity markets using vine copula and delta CoVaR modeling," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 56(C), pages 104-127.
    19. A. Charnes & W. W. Cooper, 1962. "Programming with linear fractional functionals," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 9(3‐4), pages 181-186, September.
    20. HEINEN, Andréas & VALDESOGO, Alfonso, 2009. "Asymmetric CAPM dependence for large dimensions: the Canonical Vine Autoregressive Model," LIDAM Discussion Papers CORE 2009069, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    21. Maziar Sahamkhadam, 2021. "Dynamic copula-based expectile portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 22(3), pages 209-223, May.
    22. Rodriguez, Juan Carlos, 2007. "Measuring financial contagion: A Copula approach," Journal of Empirical Finance, Elsevier, vol. 14(3), pages 401-423, June.
    23. Werner Dinkelbach, 1967. "On Nonlinear Fractional Programming," Management Science, INFORMS, vol. 13(7), pages 492-498, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maziar Sahamkhadam & Andreas Stephan, 2019. "Portfolio optimization based on forecasting models using vine copulas: An empirical assessment for the financial crisis," Papers 1912.10328, arXiv.org.
    2. Kjersti Aas, 2016. "Pair-Copula Constructions for Financial Applications: A Review," Econometrics, MDPI, vol. 4(4), pages 1-15, October.
    3. Zhang, Bangzheng & Wei, Yu & Yu, Jiang & Lai, Xiaodong & Peng, Zhenfeng, 2014. "Forecasting VaR and ES of stock index portfolio: A Vine copula method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 112-124.
    4. Hanif, Waqas & Arreola Hernandez, Jose & Sadorsky, Perry & Yoon, Seong-Min, 2020. "Are the interdependence characteristics of the US and Canadian energy equity sectors nonlinear and asymmetric?," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    5. Jose Arreola Hernandez & Shawkat Hammoudeh & Duc Khuong Nguyen & Mazin A. M. Al Janabi & Juan Carlos Reboredo, 2017. "Global financial crisis and dependence risk analysis of sector portfolios: a vine copula approach," Applied Economics, Taylor & Francis Journals, vol. 49(25), pages 2409-2427, May.
    6. Hanif, Waqas & Mensi, Walid & Vo, Xuan Vinh & BenSaïda, Ahmed & Hernandez, Jose Arreola & Kang, Sang Hoon, 2023. "Dependence and risk management of portfolios of metals and agricultural commodity futures," Resources Policy, Elsevier, vol. 82(C).
    7. Al Janabi, Mazin A.M. & Arreola Hernandez, Jose & Berger, Theo & Nguyen, Duc Khuong, 2017. "Multivariate dependence and portfolio optimization algorithms under illiquid market scenarios," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1121-1131.
    8. Sahamkhadam, Maziar & Stephan, Andreas & Östermark, Ralf, 2022. "Copula-based Black–Litterman portfolio optimization," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1055-1070.
    9. Maziar Sahamkhadam, 2021. "Dynamic copula-based expectile portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 22(3), pages 209-223, May.
    10. Dai, Xingyu & Wang, Qunwei & Zha, Donglan & Zhou, Dequn, 2020. "Multi-scale dependence structure and risk contagion between oil, gold, and US exchange rate: A wavelet-based vine-copula approach," Energy Economics, Elsevier, vol. 88(C).
    11. Jose Arreola Hernandez & Mazin A.M. Al Janabi, 2020. "Forecasting of dependence, market, and investment risks of a global index portfolio," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(3), pages 512-532, April.
    12. Huang, Wanling & Mollick, André Varella & Nguyen, Khoa Huu, 2016. "U.S. stock markets and the role of real interest rates," The Quarterly Review of Economics and Finance, Elsevier, vol. 59(C), pages 231-242.
    13. Manner, Hans & Alavi Fard, Farzad & Pourkhanali, Armin & Tafakori, Laleh, 2019. "Forecasting the joint distribution of Australian electricity prices using dynamic vine copulae," Energy Economics, Elsevier, vol. 78(C), pages 143-164.
    14. Sukcharoen, Kunlapath & Leatham, David J., 2017. "Hedging downside risk of oil refineries: A vine copula approach," Energy Economics, Elsevier, vol. 66(C), pages 493-507.
    15. Sleire, Anders D. & Støve, Bård & Otneim, Håkon & Berentsen, Geir Drage & Tjøstheim, Dag & Haugen, Sverre Hauso, 2022. "Portfolio allocation under asymmetric dependence in asset returns using local Gaussian correlations," Finance Research Letters, Elsevier, vol. 46(PB).
    16. Ra l De Jes s Guti rrez & Lidia E. Carvajal Guti rrez & Oswaldo Garcia Salgado, 2023. "Value at Risk and Expected Shortfall Estimation for Mexico s Isthmus Crude Oil Using Long-Memory GARCH-EVT Combined Approaches," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 467-480, July.
    17. Polanski, Arnold & Stoja, Evarist, 2017. "Forecasting multidimensional tail risk at short and long horizons," International Journal of Forecasting, Elsevier, vol. 33(4), pages 958-969.
    18. Lazar, Emese & Zhang, Ning, 2019. "Model risk of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 105(C), pages 74-93.
    19. Gerlach, Richard & Wang, Chao, 2020. "Semi-parametric dynamic asymmetric Laplace models for tail risk forecasting, incorporating realized measures," International Journal of Forecasting, Elsevier, vol. 36(2), pages 489-506.
    20. Gaglianone, Wagner Piazza & Lima, Luiz Renato & Linton, Oliver & Smith, Daniel R., 2011. "Evaluating Value-at-Risk Models via Quantile Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 150-160.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:42:y:2023:i:8:p:2139-2166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.