IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v36y2025i2ne70005.html
   My bibliography  Save this article

Semiparametric Copula‐Based Confidence Intervals on Level Curves for the Evaluation of the Risk Level Associated to Bivariate Events

Author

Listed:
  • Albert Folcher
  • Jean‐François Quessy

Abstract

If (X,Y)$$ \left(X,Y\right) $$ is a random pair with distribution function FX,Y(x,y)=ℙ(X≤x,Y≤y)$$ {F}_{X,Y}\left(x,y\right)=\mathbb{P}\left(X\le x,Y\le y\right) $$, one can define the level curve of probability p$$ p $$ as the values of (x,y)∈ℝ2$$ \left(x,y\right)\in {\mathbb{R}}^2 $$ such that FX,Y(x,y)=p$$ {F}_{X,Y}\left(x,y\right)=p $$. This level curve is at the base of bivariate versions of return periods for the assessment of risk associated with extreme events. In most uses of bivariate return periods, the values taken by (X,Y)$$ \left(X,Y\right) $$ on this level curve are accorded equal significance. This paper adopts an innovative point‐of‐view by showing how to build confidence sets for the values of a pair of continuous random variables on a level curve. To this end, it is shown that the conditional distribution of (X,Y)$$ \left(X,Y\right) $$ given that the pair belongs to the level curve can be written in terms of the copula that characterizes its dependence structure. This allows for the definition of confidence sets on the level curve. It is suggested that the latter be estimated semi‐parametrically, where the copula is assumed to belong to a given parametric family, and the marginals are replaced by their empirical counterparts. Formulas are derived for the Farlie–Gumbel–Morgenstern, Archimedean, Normal, and Student copulas. The methodology is illustrated on the risk level associated with the daily concentration of atmospheric pollutants.

Suggested Citation

  • Albert Folcher & Jean‐François Quessy, 2025. "Semiparametric Copula‐Based Confidence Intervals on Level Curves for the Evaluation of the Risk Level Associated to Bivariate Events," Environmetrics, John Wiley & Sons, Ltd., vol. 36(2), March.
  • Handle: RePEc:wly:envmet:v:36:y:2025:i:2:n:e70005
    DOI: 10.1002/env.70005
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.70005
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.70005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Genest, Christian & Rémillard, Bruno & Beaudoin, David, 2009. "Goodness-of-fit tests for copulas: A review and a power study," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 199-213, April.
    2. Anne‐Catherine Favre & Jean‐François Quessy & Marie‐Hélène Toupin, 2018. "The new family of Fisher copulas to model upper tail dependence and radial asymmetry: Properties and application to high‐dimensional rainfall data," Environmetrics, John Wiley & Sons, Ltd., vol. 29(3), May.
    3. Peng Ding, 2016. "On the Conditional Distribution of the Multivariate Distribution," The American Statistician, Taylor & Francis Journals, vol. 70(3), pages 293-295, July.
    4. Yang, Xipei & Frees, Edward W. & Zhang, Zhengjun, 2011. "A generalized beta copula with applications in modeling multivariate long-tailed data," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 265-284, September.
    5. Mariaelena Bottazzi Schenone & Elena Grimaccia & Maurizio Vichi, 2024. "Structural equation models for simultaneous modeling of air pollutants," Environmetrics, John Wiley & Sons, Ltd., vol. 35(3), May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Quessy, Jean-François & Durocher, Martin, 2019. "The class of copulas arising from squared distributions: Properties and inference," Econometrics and Statistics, Elsevier, vol. 12(C), pages 148-166.
    2. Fadal Abdullah-A Aldhufairi & Ranadeera G.M. Samanthi & Jungsywan H. Sepanski, 2020. "New Families of Bivariate Copulas via Unit Lomax Distortion," Risks, MDPI, vol. 8(4), pages 1-19, October.
    3. Jie Huang & Haiming Zhou & Nader Ebrahimi, 2022. "Bayesian Bivariate Cure Rate Models Using Copula Functions," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 11(3), pages 1-9, May.
    4. Daniel Puig & Oswaldo Morales-Nápoles & Fatemeh Bakhtiari & Gissela Landa, 2017. "The accountability imperative for quantifiying the uncertainty of emission forecasts : evidence from Mexico," Working Papers hal-03389325, HAL.
    5. Richard C. Bradley & Richard A. Davis & Dimitris N. Politis, 2021. "Preface to the Murray Rosenblatt memorial special issue of JTSA," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(5-6), pages 495-498, September.
    6. Bedoui, Rihab & Braiek, Sana & Guesmi, Khaled & Chevallier, Julien, 2019. "On the conditional dependence structure between oil, gold and USD exchange rates: Nested copula based GJR-GARCH model," Energy Economics, Elsevier, vol. 80(C), pages 876-889.
    7. Gaißer, Sandra & Schmid, Friedrich, 2010. "On testing equality of pairwise rank correlations in a multivariate random vector," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2598-2615, November.
    8. Righi, Marcelo Brutti & Ceretta, Paulo Sergio, 2013. "Estimating non-linear serial and cross-interdependence between financial assets," Journal of Banking & Finance, Elsevier, vol. 37(3), pages 837-846.
    9. Okhrin, Ostap & Ristig, Alexander, 2014. "Hierarchical Archimedean Copulae: The HAC Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 58(i04).
    10. Wu, Shaomin, 2014. "Construction of asymmetric copulas and its application in two-dimensional reliability modelling," European Journal of Operational Research, Elsevier, vol. 238(2), pages 476-485.
    11. Katarzyna Baran-Gurgul, 2022. "The Risk of Extreme Streamflow Drought in the Polish Carpathians—A Two-Dimensional Approach," IJERPH, MDPI, vol. 19(21), pages 1-27, October.
    12. Luca Riccetti, 2013. "A copula–GARCH model for macro asset allocation of a portfolio with commodities," Empirical Economics, Springer, vol. 44(3), pages 1315-1336, June.
    13. Yuya Sasaki & Yulong Wang, 2022. "Fixed-k Inference for Conditional Extremal Quantiles," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(2), pages 829-837, April.
    14. Daniel Puig & Oswaldo Morales-Nápoles & Fatemeh Bakhtiari & Gissela Landa, 2017. "The accountability imperative for quantifiying the uncertainty of emission forecasts : evidence from Mexico," SciencePo Working papers Main hal-03389325, HAL.
    15. Michał Adam & Piotr Bańbuła & Michał Markun, 2013. "Dependence and contagion between asset prices in Poland and abroad. A copula approach," NBP Working Papers 169, Narodowy Bank Polski.
    16. Marc Gronwald & Janina Ketterer & Stefan Trück, 2011. "The Dependence Structure between Carbon Emission Allowances and Financial Markets - A Copula Analysis," CESifo Working Paper Series 3418, CESifo.
    17. Ahmed, Osama & Serra, Teresa, 2015. "Evaluate the economic consequences of revenue insurance programs in Spain using copula models. The case of orange and apple," 2015 Conference, August 9-14, 2015, Milan, Italy 212522, International Association of Agricultural Economists.
    18. Dominik Paprotny, 2021. "Convergence Between Developed and Developing Countries: A Centennial Perspective," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 153(1), pages 193-225, January.
    19. Wanling Huang & Artem Prokhorov, 2014. "A Goodness-of-fit Test for Copulas," Econometric Reviews, Taylor & Francis Journals, vol. 33(7), pages 751-771, October.
    20. Ellington, Michael, 2022. "Fat tails, serial dependence, and implied volatility index connections," European Journal of Operational Research, Elsevier, vol. 299(2), pages 768-779.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:36:y:2025:i:2:n:e70005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.