IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v238y2014i2p476-485.html
   My bibliography  Save this article

Construction of asymmetric copulas and its application in two-dimensional reliability modelling

Author

Listed:
  • Wu, Shaomin

Abstract

Copulas offer a useful tool in modelling the dependence among random variables. In the literature, most of the existing copulas are symmetric while data collected from the real world may exhibit asymmetric nature. This necessitates developing asymmetric copulas that can model such data. In the meantime, existing methods of modelling two-dimensional reliability data are not able to capture the tail dependence that exists between the pair of age and usage, which are the two dimensions designated to describe product life. This paper proposes a new method of constructing asymmetric copulas, discusses the properties of the new copulas, and applies the method to fit two-dimensional reliability data that are collected from the real world.

Suggested Citation

  • Wu, Shaomin, 2014. "Construction of asymmetric copulas and its application in two-dimensional reliability modelling," European Journal of Operational Research, Elsevier, vol. 238(2), pages 476-485.
  • Handle: RePEc:eee:ejores:v:238:y:2014:i:2:p:476-485
    DOI: 10.1016/j.ejor.2014.03.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714002306
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2014.03.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Shaomin, 2013. "A review on coarse warranty data and analysis," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 1-11.
    2. Jung, M. & Bai, D.S., 2007. "Analysis of field data under two-dimensional warranty," Reliability Engineering and System Safety, Elsevier, vol. 92(2), pages 135-143.
    3. Wu, Shaomin & Akbarov, Artur, 2012. "Forecasting warranty claims for recently launched products," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 160-164.
    4. Zhang, Ming-Heng, 2008. "Modelling total tail dependence along diagonals," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 73-80, February.
    5. Liebscher, Eckhard, 2008. "Construction of asymmetric multivariate copulas," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2234-2250, November.
    6. Genest, Christian & Rémillard, Bruno & Beaudoin, David, 2009. "Goodness-of-fit tests for copulas: A review and a power study," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 199-213, April.
    7. Anastasiadis, Simon & Anderson, Boyd & Chukova, Stefanka, 2013. "Auto warranty and driving patterns," Reliability Engineering and System Safety, Elsevier, vol. 116(C), pages 126-134.
    8. Ye, Wuyi & Liu, Xiaoquan & Miao, Baiqi, 2012. "Measuring the subprime crisis contagion: Evidence of change point analysis of copula functions," European Journal of Operational Research, Elsevier, vol. 222(1), pages 96-103.
    9. Wu, Shaomin & Akbarov, Artur, 2011. "Support vector regression for warranty claim forecasting," European Journal of Operational Research, Elsevier, vol. 213(1), pages 196-204, August.
    10. Grundke, Peter & Polle, Simone, 2012. "Crisis and risk dependencies," European Journal of Operational Research, Elsevier, vol. 223(2), pages 518-528.
    11. Paul Embrechts, 2009. "Copulas: A Personal View," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 76(3), pages 639-650, September.
    12. Hua, Lei & Joe, Harry, 2011. "Tail order and intermediate tail dependence of multivariate copulas," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1454-1471, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Chongwen & Chinnam, Ratna Babu & Dalkiran, Evrim & Korostelev, Alexander, 2017. "Bayesian approach to hazard rate models for early detection of warranty and reliability problems using upstream supply chain information," International Journal of Production Economics, Elsevier, vol. 193(C), pages 316-331.
    2. Shokouhyar, Sajjad & Ahmadi, Sadra & Ashrafzadeh, Mahdi, 2021. "Promoting a novel method for warranty claim prediction based on social network data," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    3. Ostap Okhrin & Martin Odening & Wei Xu, 2013. "Systemic Weather Risk and Crop Insurance: The Case of China," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(2), pages 351-372, June.
    4. Gupta, Sanjib Kumar & De, Soumen & Chatterjee, Aditya, 2014. "Warranty forecasting from incomplete two-dimensional warranty data," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 1-13.
    5. Xiaolin Wang & Wei Xie, 2018. "Two-dimensional warranty: A literature review," Journal of Risk and Reliability, , vol. 232(3), pages 284-307, June.
    6. Gregor Wei{ss} & Marcus Scheffer, 2012. "Smooth Nonparametric Bernstein Vine Copulas," Papers 1210.2043, arXiv.org.
    7. Yang, Duo & He, Zhen & He, Shuguang, 2016. "Warranty claims forecasting based on a general imperfect repair model considering usage rate," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 147-154.
    8. Hofert, Marius & Mächler, Martin & McNeil, Alexander J., 2012. "Likelihood inference for Archimedean copulas in high dimensions under known margins," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 133-150.
    9. Song, Yupeng & Basu, Biswajit & Zhang, Zili & Sørensen, John Dalsgaard & Li, Jie & Chen, Jianbing, 2021. "Dynamic reliability analysis of a floating offshore wind turbine under wind-wave joint excitations via probability density evolution method," Renewable Energy, Elsevier, vol. 168(C), pages 991-1014.
    10. Lin, Kunsong & Chen, Yunxia, 2021. "Analysis of two-dimensional warranty data considering global and local dependence of heterogeneous marginals," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    11. Chehade, Abdallah & Savargaonkar, Mayuresh & Krivtsov, Vasiliy, 2022. "Conditional Gaussian mixture model for warranty claims forecasting," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    12. Pavel Krupskii & Harry Joe, 2015. "Tail-weighted measures of dependence," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(3), pages 614-629, March.
    13. Kojadinovic, Ivan & Rohmer, Tom & Segers, Johan, 2013. "Detecting changes in cross-sectional dependence in multivariate time series," LIDAM Discussion Papers ISBA 2013051, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    14. Irresberger, Felix & Weiß, Gregor N.F. & Gabrysch, Janet & Gabrysch, Sandra, 2018. "Liquidity tail risk and credit default swap spreads," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1137-1153.
    15. Jianxi Su & Edward Furman, 2016. "Multiple risk factor dependence structures: Copulas and related properties," Papers 1610.02126, arXiv.org.
    16. Fabrizio Durante & Marius Hofert & Matthias Scherer, 2010. "Multivariate Hierarchical Copulas with Shocks," Methodology and Computing in Applied Probability, Springer, vol. 12(4), pages 681-694, December.
    17. Bücher, Axel & Kojadinovic, Ivan & Rohmer, Tom & Segers, Johan, 2014. "Detecting changes in cross-sectional dependence in multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 111-128.
    18. Krupskii, Pavel & Joe, Harry, 2013. "Factor copula models for multivariate data," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 85-101.
    19. Stelios Bekiros & Shawkat Hammoudeh & Rania Jammazi & Duc Khuong Nguyen, 2018. "Sovereign bond market dependencies and crisis transmission around the eurozone debt crisis: a dynamic copula approach," Applied Economics, Taylor & Francis Journals, vol. 50(47), pages 5031-5049, October.
    20. Paul Embrechts & Marius Hofert, 2011. "Comments on: Inference in multivariate Archimedean copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 263-270, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:238:y:2014:i:2:p:476-485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.