IDEAS home Printed from https://ideas.repec.org/a/vrn/hrmsnr/y2022i1p184-191.html
   My bibliography  Save this article

Impact Of Artificial Intelligence On Recruitment Process

Author

Listed:
  • Miglena Stoyanova

    (University of Economics – Varna, Bulgaria)

Abstract

Artificial Intelligence (AI) is one of the most promising technologies that is changing our world, demonstrating its potential in various sectors. In recent years, AI has also entered the recruitment sector in relation to searching candidates from large volumes of data, screening candidates’ profiles, interviewing and selecting the most suitable ones, etc. Therefore, AI can change or modify the role of HR professionals, the candidates' perspective or even change the entire environment and policy of a company. In this regard, the aim of this paper is to explore the impact of AI in this field by looking at the opportunities and challenges of using it in the recruitment process.

Suggested Citation

  • Miglena Stoyanova, 2022. "Impact Of Artificial Intelligence On Recruitment Process," INTERNATIONAL SCIENTIFIC AND PRACTICAL CONFERENCE "HUMAN RESOURCE MANAGEMENT", University of Economics - Varna, issue 1, pages 184-191.
  • Handle: RePEc:vrn:hrmsnr:y:2022:i:1:p:184-191
    as

    Download full text from publisher

    File URL: http://conference.ue-varna.bg/hrm/wp-content/uploads/Proceedings/Papers2022/Stoyanova.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jarrahi, Mohammad Hossein, 2018. "Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making," Business Horizons, Elsevier, vol. 61(4), pages 577-586.
    2. Kaplan, Andreas & Haenlein, Michael, 2020. "Rulers of the world, unite! The challenges and opportunities of artificial intelligence," Business Horizons, Elsevier, vol. 63(1), pages 37-50.
    3. van Esch, Patrick & Black, J. Stewart, 2019. "Factors that influence new generation candidates to engage with and complete digital, AI-enabled recruiting," Business Horizons, Elsevier, vol. 62(6), pages 729-739.
    4. Black, J. Stewart & van Esch, Patrick, 2020. "AI-enabled recruiting: What is it and how should a manager use it?," Business Horizons, Elsevier, vol. 63(2), pages 215-226.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prikshat, Verma & Islam, Mohammad & Patel, Parth & Malik, Ashish & Budhwar, Pawan & Gupta, Suraksha, 2023. "AI-Augmented HRM: Literature review and a proposed multilevel framework for future research," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    2. Xu, Yingzi & Shieh, Chih-Hui & van Esch, Patrick & Ling, I-Ling, 2020. "AI customer service: Task complexity, problem-solving ability, and usage intention," Australasian marketing journal, Elsevier, vol. 28(4), pages 189-199.
    3. Deriu, Valerio & Pozharliev, Rumen & De Angelis, Matteo, 2024. "How trust and attachment styles jointly shape job candidates’ AI receptivity," Journal of Business Research, Elsevier, vol. 179(C).
    4. Makarius, Erin E. & Mukherjee, Debmalya & Fox, Joseph D. & Fox, Alexa K., 2020. "Rising with the machines: A sociotechnical framework for bringing artificial intelligence into the organization," Journal of Business Research, Elsevier, vol. 120(C), pages 262-273.
    5. Toorajipour, Reza & Sohrabpour, Vahid & Nazarpour, Ali & Oghazi, Pejvak & Fischl, Maria, 2021. "Artificial intelligence in supply chain management: A systematic literature review," Journal of Business Research, Elsevier, vol. 122(C), pages 502-517.
    6. Berk Kaan Kuguoglu & Haiko van der Voort & Marijn Janssen, 2021. "The Giant Leap for Smart Cities: Scaling Up Smart City Artificial Intelligence of Things (AIoT) Initiatives," Sustainability, MDPI, vol. 13(21), pages 1-16, November.
    7. Chowdhury, Soumyadeb & Budhwar, Pawan & Dey, Prasanta Kumar & Joel-Edgar, Sian & Abadie, Amelie, 2022. "AI-employee collaboration and business performance: Integrating knowledge-based view, socio-technical systems and organisational socialisation framework," Journal of Business Research, Elsevier, vol. 144(C), pages 31-49.
    8. Black, J. Stewart & van Esch, Patrick, 2021. "AI-enabled recruiting in the war for talent," Business Horizons, Elsevier, vol. 64(4), pages 513-524.
    9. Cao, Guangming & Duan, Yanqing & Edwards, John S. & Dwivedi, Yogesh K., 2021. "Understanding managers’ attitudes and behavioral intentions towards using artificial intelligence for organizational decision-making," Technovation, Elsevier, vol. 106(C).
    10. Decheng Fan & Kairan Liu, 2021. "The Relationship between Artificial Intelligence and China’s Sustainable Economic Growth: Focused on the Mediating Effects of Industrial Structural Change," Sustainability, MDPI, vol. 13(20), pages 1-15, October.
    11. Magdalena Graczyk-Kucharska & Robert Olszewski & Gerhard-Wilhelm Weber, 2023. "The use of spatial data mining methods for modeling HR challenges of generation Z in greater Poland Region," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(1), pages 205-237, March.
    12. Ciurea Iulia-Cristina, 2024. "The Impact of the EU AI Act on the UN Sustainable Development Goals for 2030 – A Text Analysis," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 18(1), pages 2857-2870.
    13. Siliang Tong & Nan Jia & Xueming Luo & Zheng Fang, 2021. "The Janus face of artificial intelligence feedback: Deployment versus disclosure effects on employee performance," Strategic Management Journal, Wiley Blackwell, vol. 42(9), pages 1600-1631, September.
    14. Shanyu Lin & Esra Sipahi Döngül & Serdar Vural Uygun & Mutlu Başaran Öztürk & Dinh Tran Ngoc Huy & Pham Van Tuan, 2022. "Exploring the Relationship between Abusive Management, Self-Efficacy and Organizational Performance in the Context of Human–Machine Interaction Technology and Artificial Intelligence with the Effect o," Sustainability, MDPI, vol. 14(4), pages 1-22, February.
    15. Michael Vössing & Niklas Kühl & Matteo Lind & Gerhard Satzger, 2022. "Designing Transparency for Effective Human-AI Collaboration," Information Systems Frontiers, Springer, vol. 24(3), pages 877-895, June.
    16. Shrestha, Yash Raj & Krishna, Vaibhav & von Krogh, Georg, 2021. "Augmenting organizational decision-making with deep learning algorithms: Principles, promises, and challenges," Journal of Business Research, Elsevier, vol. 123(C), pages 588-603.
    17. Yang Shen, 2024. "Future jobs: analyzing the impact of artificial intelligence on employment and its mechanisms," Economic Change and Restructuring, Springer, vol. 57(2), pages 1-33, April.
    18. Maude Lavanchy & Patrick Reichert & Jayanth Narayanan & Krishna Savani, 2023. "Applicants’ Fairness Perceptions of Algorithm-Driven Hiring Procedures," Journal of Business Ethics, Springer, vol. 188(1), pages 125-150, November.
    19. Watson, Graeme J. & Desouza, Kevin C. & Ribiere, Vincent M. & Lindič, Jaka, 2021. "Will AI ever sit at the C-suite table? The future of senior leadership," Business Horizons, Elsevier, vol. 64(4), pages 465-474.
    20. Ivanov, Stanislav & Webster, Craig, 2024. "Automated decision-making: Hoteliers’ perceptions," Technology in Society, Elsevier, vol. 76(C).

    More about this item

    Keywords

    artificial intelligence (AI); impact; recruitment; recruitment process;
    All these keywords.

    JEL classification:

    • C88 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Other Computer Software
    • C89 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Other
    • J23 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Labor Demand
    • M50 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Personnel Economics - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrn:hrmsnr:y:2022:i:1:p:184-191. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Radka Nacheva (email available below). General contact details of provider: https://edirc.repec.org/data/uevarbg.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.