IDEAS home Printed from
   My bibliography  Save this article

Testing for Cross-sectional Dependence in Regional Panel Data


  • Peter Sandholt Jensen
  • Torben Dall Schmidt


We examine three tests of cross-sectional dependence and apply them to a Danish regional panel dataset with few time periods and a large cross-section: the CD test due to Pesaran ( 2004 ), the Schott test and the Liu--Lin--Shao test. We show that the CD test and the Schott test have good properties in a Monte Carlo study. When controlling for panel-specific and time-specific fixed effects, the Schott test is superior. Our application shows that there is cross-sectional dependence in regional employment growth across Danish regions. We also show that this dependence can be accounted for by time-specific fixed effects. Thus, the tests uncover new properties of the regional data. RÉSUMÉ Nous examinons trois tests d'autonomie transversale, que nous appliquons à des ensembles de données d'une commission régionale danoise, avec peu de plages de temps et un vaste échantillons: le test d'autonomie transversale mené par Pesaran (2004), le test de Schott et le test Liu--Lin--Shao. Nous démontronsque le test d'autonomie transversale et le test de Schott présentent de bonnes propriétés dans uneétude Monte Carlo. Lorsquel'on se penchesur les effets propres au panel et les effets fixes en fonction du temps, le test de Schott dépasse les autres. Notre application illustre le dépendance transversale dans l'expansion de l'emploi à l’échelon régional dans les régions danoises, et nous démontronsque cette dépendance peut s'expliquer par des effets fixes en fonction du temps. De cette façon, le test révèle des propriétés nouvelles des données régionales. RESUMEN Examinamos tres pruebas de dependencia transversal y las aplicamos a un conjunto de datos de panel regional en Dinamarca con pocos períodos de tiempo y una gran sección transversal: la prueba CD de Pesaran (2004), la prueba Schott y la prueba Liu--Lin--Shao. Demostramos que la prueba CD y la prueba Schott poseen buenas propiedades en un estudio de Monte Carlo. Al controlar los efectos fijos específicos de panel y específicos de tiempo, la prueba Schott es superior. Nuestra aplicación demuestra que existe una dependencia transversal en el crecimiento del empleo regional a través de las regiones danesas. Asimismo, demostramos que esta dependencia puede ser explicada mediante los efectos fijos específicos de tiempo. Por lo tanto, las pruebas dejan al descubierto nuevas propiedades de los datos regionales.

Suggested Citation

  • Peter Sandholt Jensen & Torben Dall Schmidt, 2011. "Testing for Cross-sectional Dependence in Regional Panel Data," Spatial Economic Analysis, Taylor & Francis Journals, vol. 6(4), pages 423-450, July.
  • Handle: RePEc:taf:specan:v:6:y:2011:i:4:p:423-450
    DOI: 10.1080/17421772.2011.610813

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Pesaran, M.H., 2004. "‘General Diagnostic Tests for Cross Section Dependence in Panels’," Cambridge Working Papers in Economics 0435, Faculty of Economics, University of Cambridge.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Torben Dall Schmidt & Aki Kangasharju & Timo Mitze & Daniel Rauhut, 2014. "The impact of aging on regional employment: Linking spatial econometrics and population projections for a scenario analysis of future labor market outcomes in Nordic regions," Economics and Business Letters, Oviedo University Press, vol. 3(4), pages 232-246.
    2. Torben Schmidt & Peter Jensen, 2013. "Foreign labor and regional labor markets: aggregate and disaggregate impact on growth and wages in Danish regions," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 50(3), pages 809-840, June.
    3. Alexander Chudik & M. Hashem Pesaran, 2013. "Large Panel Data Models with Cross-Sectional Dependence: A Survey," CESifo Working Paper Series 4371, CESifo Group Munich.
    4. B. Fingleton & P. Cheshire & H. Garretsen & D. Igliori & J. Le Gallo & P. McCann & J. McCombie & V. Monastiriotis & B. Moore & M. Roberts, 2011. "Editorial," Spatial Economic Analysis, Taylor & Francis Journals, vol. 6(4), pages 351-357, December.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:specan:v:6:y:2011:i:4:p:423-450. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.