IDEAS home Printed from https://ideas.repec.org/a/taf/eurjfi/v12y2006i3p241-263.html
   My bibliography  Save this article

Modelling multivariate moments in European Stock Markets

Author

Listed:
  • Ignacio Mauleon

Abstract

This research extends the results of Mauleon and Perote, and derives analytically a general framework for the multivariate Edgeworth Sargan (ES) density. Its capability to account for multivariate moments beyond correlation is shown-mainly, co-skewness, co-kurtosis and co-volatility. The multivariate ES is then fitted to the residuals of a VAR model applied to three European stock market series of daily data (FTSE, DAX, CAC40), accounting for univariate as well as multivariate departures from normality. The complete model - with nearly 60 parameters - is set up and estimated jointly by maximum likelihood. Two alternative multivariate probability density functions, student's t and the normal skewed, are also estimated and compared to the ES. The empirical results show: (1) in spite of the high nonlinearity and complexity of the model, it is feasible to fit it to empirical data; (2) statistically significant multivariate effects, other than correlations, are found, and (3) the tail fit of the ES is significantly better.

Suggested Citation

  • Ignacio Mauleon, 2006. "Modelling multivariate moments in European Stock Markets," The European Journal of Finance, Taylor & Francis Journals, vol. 12(3), pages 241-263.
  • Handle: RePEc:taf:eurjfi:v:12:y:2006:i:3:p:241-263
    DOI: 10.1080/13518470500249233
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/13518470500249233
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13518470500249233?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Hwang, Soosung & Satchell, Stephen E, 1999. "Modelling Emerging Market Risk Premia Using Higher Moments," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 4(4), pages 271-296, October.
    2. Fenton, Victor M & Gallant, A Ronald, 1996. "Erratum [Convergence Rates of SNP Density Estimators]," Econometrica, Econometric Society, vol. 64(6), pages 1493-1493, November.
    3. Kee-Hong Bae & G. Andrew Karolyi & René M. Stulz, 2003. "A New Approach to Measuring Financial Contagion," The Review of Financial Studies, Society for Financial Studies, vol. 16(3), pages 717-763, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Inés Jiménez & Andrés Mora-Valencia & Javier Perote, 2022. "Dynamic selection of Gram–Charlier expansions with risk targets: an application to cryptocurrencies," Risk Management, Palgrave Macmillan, vol. 24(1), pages 81-99, March.
    2. Adcock, C J & Meade, N, 2017. "Using parametric classification trees for model selection with applications to financial risk management," European Journal of Operational Research, Elsevier, vol. 259(2), pages 746-765.
    3. Jiménez, Inés & Mora-Valencia, Andrés & Perote, Javier, 2023. "Multivariate dynamics between emerging markets and digital asset markets: An application of the SNP-DCC model," Emerging Markets Review, Elsevier, vol. 56(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gunter Franke & Jan Pieter Krahnen, 2007. "Default Risk Sharing between Banks and Markets: The Contribution of Collateralized Debt Obligations," NBER Chapters, in: The Risks of Financial Institutions, pages 603-631, National Bureau of Economic Research, Inc.
    2. Harding, Don & Pagan, Adrian, 2011. "An Econometric Analysis of Some Models for Constructed Binary Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 86-95.
    3. Claeys, Peter & Vašíček, Bořek, 2014. "Measuring bilateral spillover and testing contagion on sovereign bond markets in Europe," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 151-165.
    4. Abu S. Amin & Lucjan T. Orlowski, 2014. "Returns, Volatilities, and Correlations Across Mature, Regional, and Frontier Markets: Evidence from South Asia," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 50(3), pages 5-27, May.
    5. Jozef Baruník & Tobias Kley, 2019. "Quantile coherency: A general measure for dependence between cyclical economic variables," The Econometrics Journal, Royal Economic Society, vol. 22(2), pages 131-152.
    6. Campos-Martins, Susana & Amado, Cristina, 2022. "Financial market linkages and the sovereign debt crisis," Journal of International Money and Finance, Elsevier, vol. 123(C).
    7. Gómez-Puig, Marta & Sosvilla-Rivero, Simón, 2014. "Causality and contagion in EMU sovereign debt markets," International Review of Economics & Finance, Elsevier, vol. 33(C), pages 12-27.
    8. G. D. Gettinby & C. D. Sinclair & D. M. Power & R. A. Brown, 2004. "An Analysis of the Distribution of Extreme Share Returns in the UK from 1975 to 2000," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 31(5‐6), pages 607-646, June.
    9. Dimpfl, Thomas & Peter, Franziska J., 2014. "The impact of the financial crisis on transatlantic information flows: An intraday analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 31(C), pages 1-13.
    10. Suk-Joong Kim, 2018. "The Spillover Effects of US and Japanese Public Information News in Advanced Asia-Pacific Stock Markets," World Scientific Book Chapters, in: Information Spillovers and Market Integration in International Finance Empirical Analyses, chapter 6, pages 175-201, World Scientific Publishing Co. Pte. Ltd..
    11. Chuliá, Helena & Guillén, Montserrat & Uribe, Jorge M., 2017. "Spillovers from the United States to Latin American and G7 stock markets: A VAR quantile analysis," Emerging Markets Review, Elsevier, vol. 31(C), pages 32-46.
    12. Christiansen, Charlotte & Ranaldo, Angelo, 2009. "Extreme coexceedances in new EU member states' stock markets," Journal of Banking & Finance, Elsevier, vol. 33(6), pages 1048-1057, June.
    13. Harvey, A., 2008. "Dynamic distributions and changing copulas," Cambridge Working Papers in Economics 0839, Faculty of Economics, University of Cambridge.
    14. Zied Ftiti & Aviral Tiwari & Amél Belanès & Khaled Guesmi, 2015. "Tests of Financial Market Contagion: Evolutionary Cospectral Analysis Versus Wavelet Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 46(4), pages 575-611, December.
    15. Shaun Bond & Mardi Dungey & Renée Fry, 2006. "A Web Of Shocks: Crises Across Asian Real Estate Markets," The Journal of Real Estate Finance and Economics, Springer, vol. 32(3), pages 253-274, May.
    16. Barunik, Jozef & Krehlik, Tomas, 2016. "Measuring the frequency dynamics of financial and macroeconomic connectedness," FinMaP-Working Papers 54, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
    17. Pais, Amelia & Stork, Philip A., 2011. "Contagion risk in the Australian banking and property sectors," Journal of Banking & Finance, Elsevier, vol. 35(3), pages 681-697, March.
    18. Algieri, Bernardina & Leccadito, Arturo, 2017. "Assessing contagion risk from energy and non-energy commodity markets," Energy Economics, Elsevier, vol. 62(C), pages 312-322.
    19. Polanski, Arnold & Stoja, Evarist, 2017. "Forecasting multidimensional tail risk at short and long horizons," International Journal of Forecasting, Elsevier, vol. 33(4), pages 958-969.
    20. Martin Eling, 2006. "Performance measurement of hedge funds using data envelopment analysis," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 20(4), pages 442-471, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:eurjfi:v:12:y:2006:i:3:p:241-263. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/REJF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.